A recommender system is a tool designed to suggest relevant items to users based on their preferences and behaviors.Collaborative filtering,a popular technique within recommender systems,predicts user interests by ana...A recommender system is a tool designed to suggest relevant items to users based on their preferences and behaviors.Collaborative filtering,a popular technique within recommender systems,predicts user interests by analyzing patterns in interactions and similarities between users,leveraging past behavior data to make personalized recommendations.Despite its popularity,collaborative filtering faces notable challenges,and one of them is the issue of grey-sheep users who have unusual tastes in the system.Surprisingly,existing research has not extensively explored outlier detection techniques to address the grey-sheep problem.To fill this research gap,this study conducts a comprehensive comparison of 12 outlier detectionmethods(such as LOF,ABOD,HBOS,etc.)and introduces innovative user representations aimed at improving the identification of outliers within recommender systems.More specifically,we proposed and examined three types of user representations:1)the distribution statistics of user-user similarities,where similarities were calculated based on users’rating vectors;2)the distribution statistics of user-user similarities,but with similarities derived from users represented by latent factors;and 3)latent-factor vector representations.Our experiments on the Movie Lens and Yahoo!Movie datasets demonstrate that user representations based on latent-factor vectors consistently facilitate the identification of more grey-sheep users when applying outlier detection methods.展开更多
Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users...Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users’emotional responses,listening habits,and personal preferences to provide personalized suggestions.A significant challenge they face is the“cold start”problem,where new users have no past interactions to guide recommendations.To improve user experience,these systems aimto effectively recommendmusic even to such users by considering their listening behavior and music popularity.This paper introduces a novel music recommendation system that combines order clustering and a convolutional neural network,utilizing user comments and rankings as input.Initially,the system organizes users into clusters based on semantic similarity,followed by the utilization of their rating similarities as input for the convolutional neural network.This network then predicts ratings for unreviewed music by users.Additionally,the system analyses user music listening behaviour and music popularity.Music popularity can help to address cold start users as well.Finally,the proposed method recommends unreviewed music based on predicted high rankings and popularity,taking into account each user’s music listening habits.The proposed method combines predicted high rankings and popularity by first selecting popular unreviewedmusic that themodel predicts to have the highest ratings for each user.Among these,the most popular tracks are prioritized,defined by metrics such as frequency of listening across users.The number of recommended tracks is aligned with each user’s typical listening rate.The experimental findings demonstrate that the new method outperformed other classification techniques and prior recommendation systems,yielding a mean absolute error(MAE)rate and rootmean square error(RMSE)rate of approximately 0.0017,a hit rate of 82.45%,an average normalized discounted cumulative gain(nDCG)of 82.3%,and a prediction accuracy of new ratings at 99.388%.展开更多
This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of t...This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of traditional TEL systems.Recognizing the critical gap in existing approaches—primarily their neglect of user emotional feedback and static learning paths—our model innovatively incorporates sentiment analysis to capture and respond to nuanced emotional feedback from users.Utilizing bidirectional encoder representations from Transformers for sentiment analysis,our system not only understands but also respects user privacy by processing feedback without revealing sensitive information.The adaptive learning rate,inspired by AdaGrad,allows our model to adjust its learning trajectory based on the sentiment scores associated with user feedback,ensuring a dynamic response to both positive and negative sentiments.This dual approach enhances the system’s adapt-ability to changing user preferences and improves its contentment understanding.Our methodology involves a comprehensive analysis of both the content of learning materials and the behaviors and preferences of learners,facilitating a more personalized learning experience.By dynamically adjusting recommendations based on real-time user data and behavioral analysis,our system leverages the collective insights of similar users and rele-vant content.We validated our approach against three datasets-MovieLens,Amazon,and a proprietary TEL dataset—and saw significant improvements in recommendation precision,F-score,and mean absolute error.The results indicate the potential of integrating sentiment analysis and adaptive learning rates into TEL recommender systems,marking a step forward in developing more responsive and user-centric educational technologies.This study paves the way for future advancements in TEL systems,emphasizing the importance of emotional intelli-gence and adaptability in enhancing the learning experience.展开更多
In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniq...In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.展开更多
Attackers inject the designed adversarial sample into the target recommendation system to achieve illegal goals,seriously affecting the security and reliability of the recommendation system.It is difficult for attacke...Attackers inject the designed adversarial sample into the target recommendation system to achieve illegal goals,seriously affecting the security and reliability of the recommendation system.It is difficult for attackers to obtain detailed knowledge of the target model in actual scenarios,so using gradient optimization to generate adversarial samples in the local surrogate model has become an effective black‐box attack strategy.However,these methods suffer from gradients falling into local minima,limiting the transferability of the adversarial samples.This reduces the attack's effectiveness and often ignores the imperceptibility of the generated adversarial samples.To address these challenges,we propose a novel attack algorithm called PGMRS‐KL that combines pre‐gradient‐guided momentum gradient optimization strategy and fake user generation constrained by Kullback‐Leibler divergence.Specifically,the algorithm combines the accumulated gradient direction with the previous step's gradient direction to iteratively update the adversarial samples.It uses KL loss to minimize the distribution distance between fake and real user data,achieving high transferability and imperceptibility of the adversarial samples.Experimental results demonstrate the superiority of our approach over state‐of‐the‐art gradient‐based attack algorithms in terms of attack transferability and the generation of imperceptible fake user data.展开更多
A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking in...A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking into account the order of transactions.This work will present the implementation of sequence pattern mining for recommender systems within the domain of e-com-merce.This work will execute the Systolic tree algorithm for mining the frequent patterns to yield feasible rules for the recommender system.The feature selec-tion's objective is to pick a feature subset having the least feature similarity as well as highest relevancy with the target class.This will mitigate the feature vector's dimensionality by eliminating redundant,irrelevant,or noisy data.This work pre-sents a new hybrid recommender system based on optimized feature selection and systolic tree.The features were extracted using Term Frequency-Inverse Docu-ment Frequency(TF-IDF),feature selection with the utilization of River Forma-tion Dynamics(RFD),and the Particle Swarm Optimization(PSO)algorithm.The systolic tree is used for pattern mining,and based on this,the recommendations are given.The proposed methods were evaluated using the MovieLens dataset,and the experimental outcomes confirmed the efficiency of the techniques.It was observed that the RFD feature selection with systolic tree frequent pattern mining with collaborativefiltering,the precision of 0.89 was achieved.展开更多
Recommender systems are very useful for people to explore what they really need.Academic papers are important achievements for researchers and they often have a great deal of choice to submit their papers.In order to ...Recommender systems are very useful for people to explore what they really need.Academic papers are important achievements for researchers and they often have a great deal of choice to submit their papers.In order to improve the efficiency of selecting the most suitable journals for publishing their works,journal recommender systems(JRS)can automatically provide a small number of candidate journals based on key information such as the title and the abstract.However,users or journal owners may attack the system for their own purposes.In this paper,we discuss about the adversarial attacks against content-based filtering JRS.We propose both targeted attack method that makes some target journals appear more often in the system and non-targeted attack method that makes the system provide incorrect recommendations.We also conduct extensive experiments to validate the proposed methods.We hope this paper could help improve JRS by realizing the existence of such adversarial attacks.展开更多
Content-based filtering E-commerce recommender system was discussed fully in this paper. Users' unique features can be explored by means of vector space model firstly. Then based on the qualitative value of products ...Content-based filtering E-commerce recommender system was discussed fully in this paper. Users' unique features can be explored by means of vector space model firstly. Then based on the qualitative value of products informa tion, the recommender lists were obtained. Since the system can adapt to the users' feedback automatically, its performance were enhanced comprehensively. Finally the evaluation of the system and the experimental results were presented.展开更多
In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of consider...In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of considering the relative order of the users' ratings. Kendall based algorithm is based upon a more general model and thus could be more widely applied in e-commerce. Another discovery of this work is that the consideration of only positive correlated neighbors in prediction, in both Pearson and Kendall algorithms, achieves higher accuracy than the consideration of all neighbors, with only a small loss of coverage.展开更多
A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared...A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared with that of the frequency-based, user-based, item-based, k-means clustering-based, and genetic algorithm-based methods in terms of precision, recall, and F1 score. The results show that the proposed method yields better performance under the new user cold-start problem when each of new active users selects only one or two items into the basket. The average F1 scores on all four datasets are improved by 225.0%, 61.6%, 54.6%, 49.3%, 28.8%, and 6.3% over the frequency-based, user-based, item-based, k-means clustering-based, and two genetic algorithm-based methods, respectively.展开更多
With the rapid development of social network in recent years, a huge number of social information has been produced. As traditional recommender systems often face data sparsity and cold-start problem, the use of socia...With the rapid development of social network in recent years, a huge number of social information has been produced. As traditional recommender systems often face data sparsity and cold-start problem, the use of social information has attracted many researchers' attention to improve the prediction accuracy of recommender systems. Social trust and social relation have been proven useful to improve the performance of recommendation. Based on the classic collaborative filtering technique, we propose a PCCTTF recommender method that takes the rating time of users, social trust among users, and item tags into consideration, then do the item recommending. Experimental results show that the PCCTTF method has better prediction accuracy than classical collaborative filtering technique and the state-of-the-art recommender methods, and can also effectively alleviate data sparsity and cold-start problem. Furthermore, the PCCTTF method has better performance than all the compared methods while counting against shilling attacks.展开更多
The rapid growth in software demand incentivizes software development organizations to develop exclusive software for their customers worldwide.This problem is addressed by the software development industry by softwar...The rapid growth in software demand incentivizes software development organizations to develop exclusive software for their customers worldwide.This problem is addressed by the software development industry by software product line(SPL)practices that employ feature models.However,optimal feature selection based on user requirements is a challenging task.Thus,there is a requirement to resolve the challenges of software development,to increase satisfaction and maintain high product quality,for massive customer needs within limited resources.In this work,we propose a recommender system for the development team and clients to increase productivity and quality by utilizing historical information and prior experiences of similar developers and clients.The proposed system recommends features with their estimated cost concerning new software requirements,from all over the globe according to similar developers’and clients’needs and preferences.The system guides and facilitates the development team by suggesting a list of features,code snippets,libraries,cheat sheets of programming languages,and coding references from a cloud-based knowledge management repository.Similarly,a list of features is suggested to the client according to their needs and preferences.The experimental results revealed that the proposed recommender system is feasible and effective,providing better recommendations to developers and clients.It provides proper and reasonably well-estimated costs to perform development tasks effectively as well as increase the client’s satisfaction level.The results indicate that there is an increase in productivity,performance,and quality of products and a reduction in effort,complexity,and system failure.Therefore,our proposed system facilitates developers and clients during development by providing better recommendations in terms of solutions and anticipated costs.Thus,the increase in productivity and satisfaction level maximizes the benefits and usability of SPL in the modern era of technology.展开更多
While recommendation plays an increasingly critical role in our living, study, work, and entertainment, the recommendations we receive are often for irrelevant, duplicate, or uninteresting products and ser- vices. A c...While recommendation plays an increasingly critical role in our living, study, work, and entertainment, the recommendations we receive are often for irrelevant, duplicate, or uninteresting products and ser- vices. A critical reason for such bad recommendations lies in the intrinsic assumption that recommend- ed users and items are independent and identically distributed (liD) in existing theories and systems. Another phenomenon is that, while tremendous efforts have been made to model specific aspects of users or items, the overall user and item characteristics and their non-IIDness have been overlooked. In this paper, the non-liD nature and characteristics of recommendation are discussed, followed by the non-liD theoretical framework in order to build a deep and comprehensive understanding of the in- trinsic nature of recommendation problems, from the perspective of both couplings and heterogeneity. This non-liD recommendation research triggers the paradigm shift from lid to non-liD recommendation research and can hopefully deliver informed, relevant, personalized, and actionable recommendations. It creates exciting new directions and fundamental solutions to address various complexities including cold-start, sparse data-based, cross-domain, group-based, and shilling attack-related issues.展开更多
We discuss some methods for constructing recommender systems. An important feature of the methods studied here is that we assume the availability of a description, representation, of the objects being considered for r...We discuss some methods for constructing recommender systems. An important feature of the methods studied here is that we assume the availability of a description, representation, of the objects being considered for recommendation. The approaches studied here differ from collaborative filtering in that we only use preferences information from the individual for whom we are providing the recommendation and make no use the preferences of other collaborators. We provide a detailed discussion of the construction of the representation schema used. We consider two sources of information about the users preferences. The first are direct statements about the type of objects the user likes. The second source of information comes from ratings of objects which the user has experienced.展开更多
Many datasets in E-commerce have rich information about items and users who purchase or rate them. This information can enable advanced machine learning algorithms to extract and assign user sentiments to various aspe...Many datasets in E-commerce have rich information about items and users who purchase or rate them. This information can enable advanced machine learning algorithms to extract and assign user sentiments to various aspects of the items thus leading to more sophisticated and justifiable recommendations. However, most Collaborative Filtering (CF) techniques rely mainly on the overall preferences of users toward items only. And there is lack of conceptual and computational framework that enables an understandable aspect-based AI approach to recommending items to users. In this paper, we propose concepts and computational tools that can sharpen the logic of recommendations and that rely on users’ sentiments along various aspects of items. These concepts include: The sentiment of a user towards a specific aspect of a specific item, the emphasis that a given user places on a specific aspect in general, the popularity and controversy of an aspect among groups of users, clusters of users emphasizing a given aspect, clusters of items that are popular among a group of users and so forth. The framework introduced in this study is developed in terms of user emphasis, aspect popularity, aspect controversy, and users and items similarity. Towards this end, we introduce the Aspect-Based Collaborative Filtering Toolbox (ABCFT), where the tools are all developed based on the three-index sentiment tensor with the indices being the user, item, and aspect. The toolbox computes solutions to the questions alluded to above. We illustrate the methodology using a hotel review dataset having around 6000 users, 400 hotels and 6 aspects.展开更多
Recommender system (RS) has become a very important factor in many eCommerce sites. In our daily life, we rely on the recommendation from other persons either by word of mouth, recommendation letters, movie, item and ...Recommender system (RS) has become a very important factor in many eCommerce sites. In our daily life, we rely on the recommendation from other persons either by word of mouth, recommendation letters, movie, item and book reviews printed in newspapers, etc. The typical Recommender Systems are software tools and techniques that provide support to people by identifying interesting products and services in online store. It also provides a recommendation for certain users who search for the recommendations. The most important open challenge in Collaborative filtering recommender system is the cold start problem. If the adequate or sufficient information is not available for a new item or users, the recommender system runs into the cold start problem. To increase the usefulness of collaborative recommender systems, it could be desirable to eliminate the challenge such as cold start problem. Revealing the community structures is crucial to understand and more important with the increasing popularity of online social networks. The community detection is a key issue in social network analysis in which nodes of the communities are tightly connected each other and loosely connected between other communities. Many algorithms like Givan-Newman algorithm, modularity maximization, leading eigenvector, walk trap, etc., are used to detect the communities in the networks. To test the community division is meaningful we define a quality function called modularity. Modularity is that the links within a community are higher than the expected links in those communities. In this paper, we try to give a solution to the cold-start problem based on community detection algorithm that extracts the community from the social networks and identifies the similar users on that network. Hence, within the proposed work several intrinsic details are taken as a rule of thumb to boost the results higher. Moreover, the simulation experiment was taken to solve the cold start problem.展开更多
Many tourists who travel to explore different cultures and cities worldwide aim to find the best tourist sites,accommodation,and food according to their interests.This objective makes it harder for tourists to decide ...Many tourists who travel to explore different cultures and cities worldwide aim to find the best tourist sites,accommodation,and food according to their interests.This objective makes it harder for tourists to decide and plan where to go and what to do.Aside from hiring a local guide,an option which is beyond most travelers’budgets,the majority of sojourners nowadays use mobile devices to search for or recommend interesting sites on the basis of user reviews.Therefore,this work utilizes the prevalent recommender systems and mobile app technologies to overcome this issue.Accordingly,this study proposes location-aware personalized traveler assistance(LAPTA),a system which integrates user preferences and the global positioning system(GPS)to generate personalized and location-aware recommendations.That integration will enable the enhanced recommendation of the developed scheme relative to those from the traditional recommender systems used in customer ratings.Specifically,LAPTA separates the data obtained from Google locations into name and category tags.After the data separation,the system fetches the keywords from the user’s input according to the user’s past research behavior.The proposed system uses the K-Nearest algorithm to match the name and category tags with the user’s input to generate personalized suggestions.The system also provides suggestions on the basis of nearby popular attractions using the Google point of interest feature to enhance system usability.The experimental results showed that LAPTA could provide more reliable and accurate recommendations compared to the reviewed recommendation applications.展开更多
Recommender system is an effective tool to solve the problems of information overload.The traditional recommender systems,especially the collaborative filtering ones,only consider the two factors of users and items.Wh...Recommender system is an effective tool to solve the problems of information overload.The traditional recommender systems,especially the collaborative filtering ones,only consider the two factors of users and items.While social networks contain abundant social information,such as tags,places and times.Researches show that the social information has a great impact on recommendation results.Tags not only describe the characteristics of items,but also reflect the interests and characteristics of users.Since the traditional recommender systems cannot parse multi-dimensional information,in this paper,a tensor decomposition model based on tag regularization is proposed which incorporates social information to benefit recommender systems.The original Singular Value Decomposition(SVD)model is optimized by mining the co-occurrence and mutual exclusion of tags,and their features are constrained by the relationship between tags.Experiments on real dataset show that the proposed algorithm achieves superior performance to existing algorithms.展开更多
This paper presents an architecture of a hybrid recommender system in E-commerce environment. The goal of the system is to make special improvements in giving precisely personalized recommendation through some effecti...This paper presents an architecture of a hybrid recommender system in E-commerce environment. The goal of the system is to make special improvements in giving precisely personalized recommendation through some effective measures. Based on the study on the existing recommendation methods of both the conventional similarity function and the conventional feedback function, several improvement algorithms are developed to enhance the precision of recommendation, which include three improved similarity functions, four improved feedback functions, and adoption of both explicit and implicit preferences in individual user profile. Among them, issues and countermeasures of a new user, prominent preferences and long-term preferences are nicely addressed to gain better recommendation. The users preferences is so designed to be precisely captured by a user-side agent, and can make self-adjustment with explicit or implicit feedback.展开更多
The performance of existing diffusion-based algorithms in recommender systems is still limited by the processing ability of a single computer. In order to conduct the diffusion computation on large data sets,a paralle...The performance of existing diffusion-based algorithms in recommender systems is still limited by the processing ability of a single computer. In order to conduct the diffusion computation on large data sets,a parallel implementation of the classic diffusion method on the MapReduce framework is proposed. At first,the diffusion computation is transformed from a summation format to a cascade matrix multiplication format,and then,a parallel matrix multiplication algorithm based on dynamic vector is proposed to reduce the CPU and I / O cost on the MapReduce framework,which can also be applied to other parallel matrix multiplication scenarios. Then,block partitioning is used to further improve the performance,while the order of matrix multiplication is also taken into consideration.Experiments on different kinds of data sets have verified the efficiency of the proposed method.展开更多
文摘A recommender system is a tool designed to suggest relevant items to users based on their preferences and behaviors.Collaborative filtering,a popular technique within recommender systems,predicts user interests by analyzing patterns in interactions and similarities between users,leveraging past behavior data to make personalized recommendations.Despite its popularity,collaborative filtering faces notable challenges,and one of them is the issue of grey-sheep users who have unusual tastes in the system.Surprisingly,existing research has not extensively explored outlier detection techniques to address the grey-sheep problem.To fill this research gap,this study conducts a comprehensive comparison of 12 outlier detectionmethods(such as LOF,ABOD,HBOS,etc.)and introduces innovative user representations aimed at improving the identification of outliers within recommender systems.More specifically,we proposed and examined three types of user representations:1)the distribution statistics of user-user similarities,where similarities were calculated based on users’rating vectors;2)the distribution statistics of user-user similarities,but with similarities derived from users represented by latent factors;and 3)latent-factor vector representations.Our experiments on the Movie Lens and Yahoo!Movie datasets demonstrate that user representations based on latent-factor vectors consistently facilitate the identification of more grey-sheep users when applying outlier detection methods.
基金funded by the National Nature Sciences Foundation of China with Grant No.42250410321。
文摘Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users’emotional responses,listening habits,and personal preferences to provide personalized suggestions.A significant challenge they face is the“cold start”problem,where new users have no past interactions to guide recommendations.To improve user experience,these systems aimto effectively recommendmusic even to such users by considering their listening behavior and music popularity.This paper introduces a novel music recommendation system that combines order clustering and a convolutional neural network,utilizing user comments and rankings as input.Initially,the system organizes users into clusters based on semantic similarity,followed by the utilization of their rating similarities as input for the convolutional neural network.This network then predicts ratings for unreviewed music by users.Additionally,the system analyses user music listening behaviour and music popularity.Music popularity can help to address cold start users as well.Finally,the proposed method recommends unreviewed music based on predicted high rankings and popularity,taking into account each user’s music listening habits.The proposed method combines predicted high rankings and popularity by first selecting popular unreviewedmusic that themodel predicts to have the highest ratings for each user.Among these,the most popular tracks are prioritized,defined by metrics such as frequency of listening across users.The number of recommended tracks is aligned with each user’s typical listening rate.The experimental findings demonstrate that the new method outperformed other classification techniques and prior recommendation systems,yielding a mean absolute error(MAE)rate and rootmean square error(RMSE)rate of approximately 0.0017,a hit rate of 82.45%,an average normalized discounted cumulative gain(nDCG)of 82.3%,and a prediction accuracy of new ratings at 99.388%.
文摘This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of traditional TEL systems.Recognizing the critical gap in existing approaches—primarily their neglect of user emotional feedback and static learning paths—our model innovatively incorporates sentiment analysis to capture and respond to nuanced emotional feedback from users.Utilizing bidirectional encoder representations from Transformers for sentiment analysis,our system not only understands but also respects user privacy by processing feedback without revealing sensitive information.The adaptive learning rate,inspired by AdaGrad,allows our model to adjust its learning trajectory based on the sentiment scores associated with user feedback,ensuring a dynamic response to both positive and negative sentiments.This dual approach enhances the system’s adapt-ability to changing user preferences and improves its contentment understanding.Our methodology involves a comprehensive analysis of both the content of learning materials and the behaviors and preferences of learners,facilitating a more personalized learning experience.By dynamically adjusting recommendations based on real-time user data and behavioral analysis,our system leverages the collective insights of similar users and rele-vant content.We validated our approach against three datasets-MovieLens,Amazon,and a proprietary TEL dataset—and saw significant improvements in recommendation precision,F-score,and mean absolute error.The results indicate the potential of integrating sentiment analysis and adaptive learning rates into TEL recommender systems,marking a step forward in developing more responsive and user-centric educational technologies.This study paves the way for future advancements in TEL systems,emphasizing the importance of emotional intelli-gence and adaptability in enhancing the learning experience.
基金supported by the National Natural Science Foundation of China(No.62271274).
文摘In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.
基金The National Natural Science Foundation of China (61876001)Opening Foundation of State Key Laboratory of Cognitive Intelligence,Opening Foundation of State Key Laboratory of Cognitive Intelligence(iED2022-006)Scientific Research Planning Project of Anhui Province (2022AH050072)
文摘Attackers inject the designed adversarial sample into the target recommendation system to achieve illegal goals,seriously affecting the security and reliability of the recommendation system.It is difficult for attackers to obtain detailed knowledge of the target model in actual scenarios,so using gradient optimization to generate adversarial samples in the local surrogate model has become an effective black‐box attack strategy.However,these methods suffer from gradients falling into local minima,limiting the transferability of the adversarial samples.This reduces the attack's effectiveness and often ignores the imperceptibility of the generated adversarial samples.To address these challenges,we propose a novel attack algorithm called PGMRS‐KL that combines pre‐gradient‐guided momentum gradient optimization strategy and fake user generation constrained by Kullback‐Leibler divergence.Specifically,the algorithm combines the accumulated gradient direction with the previous step's gradient direction to iteratively update the adversarial samples.It uses KL loss to minimize the distribution distance between fake and real user data,achieving high transferability and imperceptibility of the adversarial samples.Experimental results demonstrate the superiority of our approach over state‐of‐the‐art gradient‐based attack algorithms in terms of attack transferability and the generation of imperceptible fake user data.
文摘A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking into account the order of transactions.This work will present the implementation of sequence pattern mining for recommender systems within the domain of e-com-merce.This work will execute the Systolic tree algorithm for mining the frequent patterns to yield feasible rules for the recommender system.The feature selec-tion's objective is to pick a feature subset having the least feature similarity as well as highest relevancy with the target class.This will mitigate the feature vector's dimensionality by eliminating redundant,irrelevant,or noisy data.This work pre-sents a new hybrid recommender system based on optimized feature selection and systolic tree.The features were extracted using Term Frequency-Inverse Docu-ment Frequency(TF-IDF),feature selection with the utilization of River Forma-tion Dynamics(RFD),and the Particle Swarm Optimization(PSO)algorithm.The systolic tree is used for pattern mining,and based on this,the recommendations are given.The proposed methods were evaluated using the MovieLens dataset,and the experimental outcomes confirmed the efficiency of the techniques.It was observed that the RFD feature selection with systolic tree frequent pattern mining with collaborativefiltering,the precision of 0.89 was achieved.
基金This work is supported by the National Natural Science Foundation of China under Grant Nos.U1636215,61902082the Guangdong Key R&D Program of China 2019B010136003Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2019).
文摘Recommender systems are very useful for people to explore what they really need.Academic papers are important achievements for researchers and they often have a great deal of choice to submit their papers.In order to improve the efficiency of selecting the most suitable journals for publishing their works,journal recommender systems(JRS)can automatically provide a small number of candidate journals based on key information such as the title and the abstract.However,users or journal owners may attack the system for their own purposes.In this paper,we discuss about the adversarial attacks against content-based filtering JRS.We propose both targeted attack method that makes some target journals appear more often in the system and non-targeted attack method that makes the system provide incorrect recommendations.We also conduct extensive experiments to validate the proposed methods.We hope this paper could help improve JRS by realizing the existence of such adversarial attacks.
基金Supported bythe Hunan Teaching Reformand Re-search Project of Colleges and Universities (2003-B72) the HunanBoard of Review on Philosophic and Social Scientific Pay-off Project(0406035) the Hunan Soft Science Research Project(04ZH6005)
文摘Content-based filtering E-commerce recommender system was discussed fully in this paper. Users' unique features can be explored by means of vector space model firstly. Then based on the qualitative value of products informa tion, the recommender lists were obtained. Since the system can adapt to the users' feedback automatically, its performance were enhanced comprehensively. Finally the evaluation of the system and the experimental results were presented.
基金Supported by the National Natural Science Foun-dation of China (60573095)
文摘In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of considering the relative order of the users' ratings. Kendall based algorithm is based upon a more general model and thus could be more widely applied in e-commerce. Another discovery of this work is that the consideration of only positive correlated neighbors in prediction, in both Pearson and Kendall algorithms, achieves higher accuracy than the consideration of all neighbors, with only a small loss of coverage.
基金supporting by grant fund under the Strategic Scholarships for Frontier Research Network for the PhD Program Thai Doctoral degree
文摘A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared with that of the frequency-based, user-based, item-based, k-means clustering-based, and genetic algorithm-based methods in terms of precision, recall, and F1 score. The results show that the proposed method yields better performance under the new user cold-start problem when each of new active users selects only one or two items into the basket. The average F1 scores on all four datasets are improved by 225.0%, 61.6%, 54.6%, 49.3%, 28.8%, and 6.3% over the frequency-based, user-based, item-based, k-means clustering-based, and two genetic algorithm-based methods, respectively.
基金Supported by the National Natural Science Foundation of China(71662014,61602219,71861013)。
文摘With the rapid development of social network in recent years, a huge number of social information has been produced. As traditional recommender systems often face data sparsity and cold-start problem, the use of social information has attracted many researchers' attention to improve the prediction accuracy of recommender systems. Social trust and social relation have been proven useful to improve the performance of recommendation. Based on the classic collaborative filtering technique, we propose a PCCTTF recommender method that takes the rating time of users, social trust among users, and item tags into consideration, then do the item recommending. Experimental results show that the PCCTTF method has better prediction accuracy than classical collaborative filtering technique and the state-of-the-art recommender methods, and can also effectively alleviate data sparsity and cold-start problem. Furthermore, the PCCTTF method has better performance than all the compared methods while counting against shilling attacks.
基金supported by the National Natural Science Foundation of China(Grant Number:61672080,Sponsored Authors:Yang S.,Sponsors’Websites:http://www.nsfc.gov.cn/english/site_1/index.html).
文摘The rapid growth in software demand incentivizes software development organizations to develop exclusive software for their customers worldwide.This problem is addressed by the software development industry by software product line(SPL)practices that employ feature models.However,optimal feature selection based on user requirements is a challenging task.Thus,there is a requirement to resolve the challenges of software development,to increase satisfaction and maintain high product quality,for massive customer needs within limited resources.In this work,we propose a recommender system for the development team and clients to increase productivity and quality by utilizing historical information and prior experiences of similar developers and clients.The proposed system recommends features with their estimated cost concerning new software requirements,from all over the globe according to similar developers’and clients’needs and preferences.The system guides and facilitates the development team by suggesting a list of features,code snippets,libraries,cheat sheets of programming languages,and coding references from a cloud-based knowledge management repository.Similarly,a list of features is suggested to the client according to their needs and preferences.The experimental results revealed that the proposed recommender system is feasible and effective,providing better recommendations to developers and clients.It provides proper and reasonably well-estimated costs to perform development tasks effectively as well as increase the client’s satisfaction level.The results indicate that there is an increase in productivity,performance,and quality of products and a reduction in effort,complexity,and system failure.Therefore,our proposed system facilitates developers and clients during development by providing better recommendations in terms of solutions and anticipated costs.Thus,the increase in productivity and satisfaction level maximizes the benefits and usability of SPL in the modern era of technology.
文摘While recommendation plays an increasingly critical role in our living, study, work, and entertainment, the recommendations we receive are often for irrelevant, duplicate, or uninteresting products and ser- vices. A critical reason for such bad recommendations lies in the intrinsic assumption that recommend- ed users and items are independent and identically distributed (liD) in existing theories and systems. Another phenomenon is that, while tremendous efforts have been made to model specific aspects of users or items, the overall user and item characteristics and their non-IIDness have been overlooked. In this paper, the non-liD nature and characteristics of recommendation are discussed, followed by the non-liD theoretical framework in order to build a deep and comprehensive understanding of the in- trinsic nature of recommendation problems, from the perspective of both couplings and heterogeneity. This non-liD recommendation research triggers the paradigm shift from lid to non-liD recommendation research and can hopefully deliver informed, relevant, personalized, and actionable recommendations. It creates exciting new directions and fundamental solutions to address various complexities including cold-start, sparse data-based, cross-domain, group-based, and shilling attack-related issues.
文摘We discuss some methods for constructing recommender systems. An important feature of the methods studied here is that we assume the availability of a description, representation, of the objects being considered for recommendation. The approaches studied here differ from collaborative filtering in that we only use preferences information from the individual for whom we are providing the recommendation and make no use the preferences of other collaborators. We provide a detailed discussion of the construction of the representation schema used. We consider two sources of information about the users preferences. The first are direct statements about the type of objects the user likes. The second source of information comes from ratings of objects which the user has experienced.
文摘Many datasets in E-commerce have rich information about items and users who purchase or rate them. This information can enable advanced machine learning algorithms to extract and assign user sentiments to various aspects of the items thus leading to more sophisticated and justifiable recommendations. However, most Collaborative Filtering (CF) techniques rely mainly on the overall preferences of users toward items only. And there is lack of conceptual and computational framework that enables an understandable aspect-based AI approach to recommending items to users. In this paper, we propose concepts and computational tools that can sharpen the logic of recommendations and that rely on users’ sentiments along various aspects of items. These concepts include: The sentiment of a user towards a specific aspect of a specific item, the emphasis that a given user places on a specific aspect in general, the popularity and controversy of an aspect among groups of users, clusters of users emphasizing a given aspect, clusters of items that are popular among a group of users and so forth. The framework introduced in this study is developed in terms of user emphasis, aspect popularity, aspect controversy, and users and items similarity. Towards this end, we introduce the Aspect-Based Collaborative Filtering Toolbox (ABCFT), where the tools are all developed based on the three-index sentiment tensor with the indices being the user, item, and aspect. The toolbox computes solutions to the questions alluded to above. We illustrate the methodology using a hotel review dataset having around 6000 users, 400 hotels and 6 aspects.
文摘Recommender system (RS) has become a very important factor in many eCommerce sites. In our daily life, we rely on the recommendation from other persons either by word of mouth, recommendation letters, movie, item and book reviews printed in newspapers, etc. The typical Recommender Systems are software tools and techniques that provide support to people by identifying interesting products and services in online store. It also provides a recommendation for certain users who search for the recommendations. The most important open challenge in Collaborative filtering recommender system is the cold start problem. If the adequate or sufficient information is not available for a new item or users, the recommender system runs into the cold start problem. To increase the usefulness of collaborative recommender systems, it could be desirable to eliminate the challenge such as cold start problem. Revealing the community structures is crucial to understand and more important with the increasing popularity of online social networks. The community detection is a key issue in social network analysis in which nodes of the communities are tightly connected each other and loosely connected between other communities. Many algorithms like Givan-Newman algorithm, modularity maximization, leading eigenvector, walk trap, etc., are used to detect the communities in the networks. To test the community division is meaningful we define a quality function called modularity. Modularity is that the links within a community are higher than the expected links in those communities. In this paper, we try to give a solution to the cold-start problem based on community detection algorithm that extracts the community from the social networks and identifies the similar users on that network. Hence, within the proposed work several intrinsic details are taken as a rule of thumb to boost the results higher. Moreover, the simulation experiment was taken to solve the cold start problem.
基金The authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges(APC)of this publication.
文摘Many tourists who travel to explore different cultures and cities worldwide aim to find the best tourist sites,accommodation,and food according to their interests.This objective makes it harder for tourists to decide and plan where to go and what to do.Aside from hiring a local guide,an option which is beyond most travelers’budgets,the majority of sojourners nowadays use mobile devices to search for or recommend interesting sites on the basis of user reviews.Therefore,this work utilizes the prevalent recommender systems and mobile app technologies to overcome this issue.Accordingly,this study proposes location-aware personalized traveler assistance(LAPTA),a system which integrates user preferences and the global positioning system(GPS)to generate personalized and location-aware recommendations.That integration will enable the enhanced recommendation of the developed scheme relative to those from the traditional recommender systems used in customer ratings.Specifically,LAPTA separates the data obtained from Google locations into name and category tags.After the data separation,the system fetches the keywords from the user’s input according to the user’s past research behavior.The proposed system uses the K-Nearest algorithm to match the name and category tags with the user’s input to generate personalized suggestions.The system also provides suggestions on the basis of nearby popular attractions using the Google point of interest feature to enhance system usability.The experimental results showed that LAPTA could provide more reliable and accurate recommendations compared to the reviewed recommendation applications.
基金the following grants:The National Key Research andDevelopment Program of China(No.2019YFB1404602,X.D.Zhang)The Natural Science Foundationof the Jiangsu Higher Education Institutions of China(No.17KJB520017,Z.B.Sun)+2 种基金The YoungTeachers Training Project of Nanjing Audit University(No.19QNPY017,Z.B.Sun)The OpeningProject of Jiangsu Key Laboratory of Data Science and Smart Software(No.2018DS301,H.F.Guo,Jinling Institute of Technology)Funded by Government Audit Research Foundation of Nanjing Audit University.
文摘Recommender system is an effective tool to solve the problems of information overload.The traditional recommender systems,especially the collaborative filtering ones,only consider the two factors of users and items.While social networks contain abundant social information,such as tags,places and times.Researches show that the social information has a great impact on recommendation results.Tags not only describe the characteristics of items,but also reflect the interests and characteristics of users.Since the traditional recommender systems cannot parse multi-dimensional information,in this paper,a tensor decomposition model based on tag regularization is proposed which incorporates social information to benefit recommender systems.The original Singular Value Decomposition(SVD)model is optimized by mining the co-occurrence and mutual exclusion of tags,and their features are constrained by the relationship between tags.Experiments on real dataset show that the proposed algorithm achieves superior performance to existing algorithms.
文摘This paper presents an architecture of a hybrid recommender system in E-commerce environment. The goal of the system is to make special improvements in giving precisely personalized recommendation through some effective measures. Based on the study on the existing recommendation methods of both the conventional similarity function and the conventional feedback function, several improvement algorithms are developed to enhance the precision of recommendation, which include three improved similarity functions, four improved feedback functions, and adoption of both explicit and implicit preferences in individual user profile. Among them, issues and countermeasures of a new user, prominent preferences and long-term preferences are nicely addressed to gain better recommendation. The users preferences is so designed to be precisely captured by a user-side agent, and can make self-adjustment with explicit or implicit feedback.
基金Sponsored by the National High Technology Research and Development Program of China(No.2011AA01A102)the Key Program of the Chinese Academy of Sciences(No.KGZD-EW-103-2)
文摘The performance of existing diffusion-based algorithms in recommender systems is still limited by the processing ability of a single computer. In order to conduct the diffusion computation on large data sets,a parallel implementation of the classic diffusion method on the MapReduce framework is proposed. At first,the diffusion computation is transformed from a summation format to a cascade matrix multiplication format,and then,a parallel matrix multiplication algorithm based on dynamic vector is proposed to reduce the CPU and I / O cost on the MapReduce framework,which can also be applied to other parallel matrix multiplication scenarios. Then,block partitioning is used to further improve the performance,while the order of matrix multiplication is also taken into consideration.Experiments on different kinds of data sets have verified the efficiency of the proposed method.