期刊文献+
共找到4,800篇文章
< 1 2 240 >
每页显示 20 50 100
Using Outlier Detection to Identify Grey-Sheep Users in Recommender Systems: AComparative Study
1
作者 Yong Zheng 《Computers, Materials & Continua》 2025年第6期4315-4328,共14页
A recommender system is a tool designed to suggest relevant items to users based on their preferences and behaviors.Collaborative filtering,a popular technique within recommender systems,predicts user interests by ana... A recommender system is a tool designed to suggest relevant items to users based on their preferences and behaviors.Collaborative filtering,a popular technique within recommender systems,predicts user interests by analyzing patterns in interactions and similarities between users,leveraging past behavior data to make personalized recommendations.Despite its popularity,collaborative filtering faces notable challenges,and one of them is the issue of grey-sheep users who have unusual tastes in the system.Surprisingly,existing research has not extensively explored outlier detection techniques to address the grey-sheep problem.To fill this research gap,this study conducts a comprehensive comparison of 12 outlier detectionmethods(such as LOF,ABOD,HBOS,etc.)and introduces innovative user representations aimed at improving the identification of outliers within recommender systems.More specifically,we proposed and examined three types of user representations:1)the distribution statistics of user-user similarities,where similarities were calculated based on users’rating vectors;2)the distribution statistics of user-user similarities,but with similarities derived from users represented by latent factors;and 3)latent-factor vector representations.Our experiments on the Movie Lens and Yahoo!Movie datasets demonstrate that user representations based on latent-factor vectors consistently facilitate the identification of more grey-sheep users when applying outlier detection methods. 展开更多
关键词 recommender system collaborative filtering grey-sheep users outlier detection
在线阅读 下载PDF
A novel method for a technology enhanced learning recommender system considering changing user interest based on neural collaborative filtering
2
作者 Mohammad Mehran Lesan Sedgh Alimohammad Latif Sima Emadi 《Data Science and Management》 2025年第2期196-206,共11页
This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of t... This study introduces an advanced recommender system for technology enhanced learning(TEL)that synergizes neural collaborative filtering,sentiment analysis,and an adaptive learning rate to address the limitations of traditional TEL systems.Recognizing the critical gap in existing approaches—primarily their neglect of user emotional feedback and static learning paths—our model innovatively incorporates sentiment analysis to capture and respond to nuanced emotional feedback from users.Utilizing bidirectional encoder representations from Transformers for sentiment analysis,our system not only understands but also respects user privacy by processing feedback without revealing sensitive information.The adaptive learning rate,inspired by AdaGrad,allows our model to adjust its learning trajectory based on the sentiment scores associated with user feedback,ensuring a dynamic response to both positive and negative sentiments.This dual approach enhances the system’s adapt-ability to changing user preferences and improves its contentment understanding.Our methodology involves a comprehensive analysis of both the content of learning materials and the behaviors and preferences of learners,facilitating a more personalized learning experience.By dynamically adjusting recommendations based on real-time user data and behavioral analysis,our system leverages the collective insights of similar users and rele-vant content.We validated our approach against three datasets-MovieLens,Amazon,and a proprietary TEL dataset—and saw significant improvements in recommendation precision,F-score,and mean absolute error.The results indicate the potential of integrating sentiment analysis and adaptive learning rates into TEL recommender systems,marking a step forward in developing more responsive and user-centric educational technologies.This study paves the way for future advancements in TEL systems,emphasizing the importance of emotional intelli-gence and adaptability in enhancing the learning experience. 展开更多
关键词 Enhanced learning recommendation system Neural collaborative filtering User interest
在线阅读 下载PDF
A Deep Collaborative Neural Generative Embedding for Rating Prediction in Movie Recommendation Systems
3
作者 Ravi Nahta Nagaraj Naik +1 位作者 Srivinay Swetha Parvatha Reddy Chandrasekhara 《Computer Modeling in Engineering & Sciences》 2025年第7期461-487,共27页
The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films... The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality. 展开更多
关键词 Cold start problem recommender systems METADATA deep learning collaborative filtering generative model
在线阅读 下载PDF
Real-time operational parameter recommendation system for tunnel boring machines:Application and performance analysis
4
作者 WANG Shuangjing WU Leijie LI Xu 《Journal of Mountain Science》 2025年第5期1819-1831,共13页
The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model... The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments. 展开更多
关键词 Tunnel Boring Machine Similarity based method Boring indexes Operational parameters Realtime recommendation
原文传递
Integration of Federated Learning and Graph Convolutional Networks for Movie Recommendation Systems
5
作者 Sony Peng Sophort Siet +3 位作者 Ilkhomjon Sadriddinov Dae-Young Kim Kyuwon Park Doo-Soon Park 《Computers, Materials & Continua》 2025年第5期2041-2057,共17页
Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that lever... Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that leverages user-item interactions to generate recommendations.However,it struggles with challenges like the cold-start problem,scalability issues,and data sparsity.To address these limitations,we develop a Graph Convolutional Networks(GCNs)model that captures the complex network of interactions between users and items,identifying subtle patterns that traditional methods may overlook.We integrate this GCNs model into a federated learning(FL)framework,enabling themodel to learn fromdecentralized datasets.This not only significantly enhances user privacy—a significant improvement over conventionalmodels but also reassures users about the safety of their data.Additionally,by securely incorporating demographic information,our approach further personalizes recommendations and mitigates the coldstart issue without compromising user data.We validate our RSs model using the openMovieLens dataset and evaluate its performance across six key metrics:Precision,Recall,Area Under the Receiver Operating Characteristic Curve(ROC-AUC),F1 Score,Normalized Discounted Cumulative Gain(NDCG),and Mean Reciprocal Rank(MRR).The experimental results demonstrate significant enhancements in recommendation quality,underscoring that combining GCNs with CF in a federated setting provides a transformative solution for advanced recommendation systems. 展开更多
关键词 recommendation systems collaborative filtering graph convolutional networks federated learning framework
在线阅读 下载PDF
Ordered Clustering-Based Semantic Music Recommender System Using Deep Learning Selection
6
作者 Weitao Ha Sheng Gang +2 位作者 Yahya D.Navaei Abubakar S.Gezawa Yaser A.Nanehkaran 《Computers, Materials & Continua》 2025年第5期3025-3057,共33页
Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users... Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users’emotional responses,listening habits,and personal preferences to provide personalized suggestions.A significant challenge they face is the“cold start”problem,where new users have no past interactions to guide recommendations.To improve user experience,these systems aimto effectively recommendmusic even to such users by considering their listening behavior and music popularity.This paper introduces a novel music recommendation system that combines order clustering and a convolutional neural network,utilizing user comments and rankings as input.Initially,the system organizes users into clusters based on semantic similarity,followed by the utilization of their rating similarities as input for the convolutional neural network.This network then predicts ratings for unreviewed music by users.Additionally,the system analyses user music listening behaviour and music popularity.Music popularity can help to address cold start users as well.Finally,the proposed method recommends unreviewed music based on predicted high rankings and popularity,taking into account each user’s music listening habits.The proposed method combines predicted high rankings and popularity by first selecting popular unreviewedmusic that themodel predicts to have the highest ratings for each user.Among these,the most popular tracks are prioritized,defined by metrics such as frequency of listening across users.The number of recommended tracks is aligned with each user’s typical listening rate.The experimental findings demonstrate that the new method outperformed other classification techniques and prior recommendation systems,yielding a mean absolute error(MAE)rate and rootmean square error(RMSE)rate of approximately 0.0017,a hit rate of 82.45%,an average normalized discounted cumulative gain(nDCG)of 82.3%,and a prediction accuracy of new ratings at 99.388%. 展开更多
关键词 Music recommender system order clustering deep learning
在线阅读 下载PDF
Conditional Generative Adversarial Network-Based Travel Route Recommendation
7
作者 Sunbin Shin Luong Vuong Nguyen +3 位作者 Grzegorz J.Nalepa Paulo Novais Xuan Hau Pham Jason J.Jung 《Computers, Materials & Continua》 2026年第1期1178-1217,共40页
Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of... Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence. 展开更多
关键词 Travel route recommendation conditional generative adversarial network heterogeneous information network anchor-and-expand algorithm
在线阅读 下载PDF
An E-Commerce Recommender System Based on Click and Purchase Data to Items and Considered of Interest Shifting of Customers 被引量:3
8
作者 Duo Lin Wu Zhaoxia XU Shenggang 《China Communications》 SCIE CSCD 2015年第S2期72-82,共11页
A well-performed recommender system for an e-commerce web site can help customers easily find favorite items and then increase the turnover of merchants, hence it is important for both customers and merchants. In most... A well-performed recommender system for an e-commerce web site can help customers easily find favorite items and then increase the turnover of merchants, hence it is important for both customers and merchants. In most of the existing recommender systems, only the purchase information is utilized data and the navigational and behavioral data are seldom concerned. In this paper, we design a novel recommender system for comprehensive online shopping sites. In the proposed recommender system, the navigational and behavioral data, such as access, click, read, and purchase information of a customer, are utilized to calculate the preference degree to each item; then items with larger preference degrees are recommended to the customer. The proposed method has several innovations and two of them are more remarkable: one is that nonexpendable items are distinguished from expendable ones and handled by a different way; another is that the interest shifting of customers are considered. Lastly, we structure an example to show the operation procedure and the performance of the proposed recommender system. The results show that the proposed recommender method with considering interest shifting is superior to Kim et al(2011) method and the method without considering interest shifting. 展开更多
关键词 recommendER system online SHOPPING E-COMMERCE preference degree
在线阅读 下载PDF
An E-Commerce Recommender System Based on Content-Based Filtering 被引量:3
9
作者 HE Weihong CAO Yi 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1091-1096,共6页
Content-based filtering E-commerce recommender system was discussed fully in this paper. Users' unique features can be explored by means of vector space model firstly. Then based on the qualitative value of products ... Content-based filtering E-commerce recommender system was discussed fully in this paper. Users' unique features can be explored by means of vector space model firstly. Then based on the qualitative value of products informa tion, the recommender lists were obtained. Since the system can adapt to the users' feedback automatically, its performance were enhanced comprehensively. Finally the evaluation of the system and the experimental results were presented. 展开更多
关键词 E-COMMERCE recommender system personalized recommendation content-based filtering Vector Spatial Model(VSM)
在线阅读 下载PDF
A New Time-Aware Collaborative Filtering Intelligent Recommendation System 被引量:6
10
作者 Weijin Jiang Jiahui Chen +4 位作者 Yirong Jiang Yuhui Xu Yang Wang Lina Tan Guo Liang 《Computers, Materials & Continua》 SCIE EI 2019年第8期849-859,共11页
Aiming at the problem that the traditional collaborative filtering recommendation algorithm does not fully consider the influence of correlation between projects on recommendation accuracy,this paper introduces projec... Aiming at the problem that the traditional collaborative filtering recommendation algorithm does not fully consider the influence of correlation between projects on recommendation accuracy,this paper introduces project attribute fuzzy matrix,measures the project relevance through fuzzy clustering method,and classifies all project attributes.Then,the weight of the project relevance is introduced in the user similarity calculation,so that the nearest neighbor search is more accurate.In the prediction scoring section,considering the change of user interest with time,it is proposed to use the time weighting function to improve the influence of the time effect of the evaluation,so that the newer evaluation information in the system has a relatively large weight.The experimental results show that the improved algorithm improves the recommendation accuracy and improves the recommendation quality. 展开更多
关键词 Fuzzy clustering time weight attenuation function Collaborative filtering method recommendation algorithm
在线阅读 下载PDF
Collaborative Filtering Algorithms Based on Kendall Correlation in Recommender Systems 被引量:3
11
作者 YAO Yu ZHU Shanfeng CHEN Xinmeng 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1086-1090,共5页
In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of consider... In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of considering the relative order of the users' ratings. Kendall based algorithm is based upon a more general model and thus could be more widely applied in e-commerce. Another discovery of this work is that the consideration of only positive correlated neighbors in prediction, in both Pearson and Kendall algorithms, achieves higher accuracy than the consideration of all neighbors, with only a small loss of coverage. 展开更多
关键词 Kendall correlation collaborative filtering algorithms recommender systems positive correlation
在线阅读 下载PDF
Adversarial Attacks on Content-Based Filtering Journal Recommender Systems 被引量:4
12
作者 Zhaoquan Gu Yinyin Cai +5 位作者 Sheng Wang Mohan Li Jing Qiu Shen Su Xiaojiang Du Zhihong Tian 《Computers, Materials & Continua》 SCIE EI 2020年第9期1755-1770,共16页
Recommender systems are very useful for people to explore what they really need.Academic papers are important achievements for researchers and they often have a great deal of choice to submit their papers.In order to ... Recommender systems are very useful for people to explore what they really need.Academic papers are important achievements for researchers and they often have a great deal of choice to submit their papers.In order to improve the efficiency of selecting the most suitable journals for publishing their works,journal recommender systems(JRS)can automatically provide a small number of candidate journals based on key information such as the title and the abstract.However,users or journal owners may attack the system for their own purposes.In this paper,we discuss about the adversarial attacks against content-based filtering JRS.We propose both targeted attack method that makes some target journals appear more often in the system and non-targeted attack method that makes the system provide incorrect recommendations.We also conduct extensive experiments to validate the proposed methods.We hope this paper could help improve JRS by realizing the existence of such adversarial attacks. 展开更多
关键词 Journal recommender system adversarial attacks Rocchio algorithm k-nearest-neighbor algorithm
在线阅读 下载PDF
A Probabilistic Rating Prediction and Explanation Inference Model for Recommender Systems 被引量:3
13
作者 WANG Hanshi FU Qiujie +1 位作者 LIU Lizhen SONG Wei 《China Communications》 SCIE CSCD 2016年第2期79-94,共16页
Collaborative Filtering(CF) is a leading approach to build recommender systems which has gained considerable development and popularity. A predominant approach to CF is rating prediction recommender algorithm, aiming ... Collaborative Filtering(CF) is a leading approach to build recommender systems which has gained considerable development and popularity. A predominant approach to CF is rating prediction recommender algorithm, aiming to predict a user's rating for those items which were not rated yet by the user. However, with the increasing number of items and users, thedata is sparse.It is difficult to detectlatent closely relation among the items or users for predicting the user behaviors. In this paper,we enhance the rating prediction approach leading to substantial improvement of prediction accuracy by categorizing according to the genres of movies. Then the probabilities that users are interested in the genres are computed to integrate the prediction of each genre cluster. A novel probabilistic approach based on the sentiment analysis of the user reviews is also proposed to give intuitional explanations of why an item is recommended.To test the novel recommendation approach, a new corpus of user reviews on movies obtained from the Internet Movies Database(IMDB) has been generated. Experimental results show that the proposed framework is effective and achieves a better prediction performance. 展开更多
关键词 collaborative filtering recommendersystems rating prediction sentiment analysis matrix factorization recommendation explanation
在线阅读 下载PDF
Intelligent Costume Recommendation System Based on Expert System 被引量:2
14
作者 MAO Qingqing DONG Aihua +1 位作者 MIAO Qingying PAN Lu 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第2期227-234,共8页
On the basis of expert system, we design a costume recommendation system which provides customers with clothing collocation solution and more experience. We set up a costume matching knowledge base collected from expe... On the basis of expert system, we design a costume recommendation system which provides customers with clothing collocation solution and more experience. We set up a costume matching knowledge base collected from experts, and represent the knowledge with production rules. By analyzing the customers' specific physical information got through man-machine interface, the proposed system provides customers an intelligent costume recommendation strategy in accordance with blackboard model reasoning. Moreover, index adding algorithm is integrated into the traditional serial blackboard model in the system. Finally, we present experiments which show the search rate is improved significantly. 展开更多
关键词 costume recommendation expert system blackboard model index adding
原文传递
Collaborative Filtering and Artificial Neural Network Based Recommendation System for Advanced Applications 被引量:3
15
作者 Bharadwaja Krishnadev Mylavarapu 《Journal of Computer and Communications》 2018年第12期1-14,共14页
To make recommendation on items from the user for historical user rating several intelligent systems are using. The most common method is Recommendation systems. The main areas which play major roles are social networ... To make recommendation on items from the user for historical user rating several intelligent systems are using. The most common method is Recommendation systems. The main areas which play major roles are social networking, digital marketing, online shopping and E-commerce. Recommender system consists of several techniques for recommendations. Here we used the well known approach named as Collaborative filtering (CF). There are two types of problems mainly available with collaborative filtering. They are complete cold start (CCS) problem and incomplete cold start (ICS) problem. The authors proposed three novel methods such as collaborative filtering, and artificial neural networks and at last support vector machine to resolve CCS as well ICS problems. Based on the specific deep neural network SADE we can be able to remove the characteristics of products. By using sequential active of users and product characteristics we have the capability to adapt the cold start product ratings with the applications of the state of the art CF model, time SVD++. The proposed system consists of Netflix rating dataset which is used to perform the baseline techniques for rating prediction of cold start items. The calculation of two proposed recommendation techniques is compared on ICS items, and it is proved that it will be adaptable method. The proposed method can be able to transfer the products since cold start transfers to non-cold start status. Artificial Neural Network (ANN) is employed here to extract the item content features. One of the user preferences such as temporal dynamics is used to obtain the contented characteristics into predictions to overcome those problems. For the process of classification we have used linear support vector machine classifiers to receive the better performance when compared with the earlier methods. 展开更多
关键词 Artificial NEURAL Network Support VECTOR Machine recommendATION systems COLD START Problems
在线阅读 下载PDF
Applying memetic algorithm-based clustering to recommender system with high sparsity problem 被引量:2
16
作者 MARUNG Ukrit THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS 2014年第9期3541-3550,共10页
A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared... A new recommendation method was presented based on memetic algorithm-based clustering. The proposed method was tested on four highly sparse real-world datasets. Its recommendation performance is evaluated and compared with that of the frequency-based, user-based, item-based, k-means clustering-based, and genetic algorithm-based methods in terms of precision, recall, and F1 score. The results show that the proposed method yields better performance under the new user cold-start problem when each of new active users selects only one or two items into the basket. The average F1 scores on all four datasets are improved by 225.0%, 61.6%, 54.6%, 49.3%, 28.8%, and 6.3% over the frequency-based, user-based, item-based, k-means clustering-based, and two genetic algorithm-based methods, respectively. 展开更多
关键词 memetic algorithm recommender system sparsity problem cold-start problem clustering method
在线阅读 下载PDF
Hybrid Recommender System Incorporating Weighted Social Trust and Item Tags 被引量:2
17
作者 ZHU Wenqiang 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2020年第2期118-128,共11页
With the rapid development of social network in recent years, a huge number of social information has been produced. As traditional recommender systems often face data sparsity and cold-start problem, the use of socia... With the rapid development of social network in recent years, a huge number of social information has been produced. As traditional recommender systems often face data sparsity and cold-start problem, the use of social information has attracted many researchers' attention to improve the prediction accuracy of recommender systems. Social trust and social relation have been proven useful to improve the performance of recommendation. Based on the classic collaborative filtering technique, we propose a PCCTTF recommender method that takes the rating time of users, social trust among users, and item tags into consideration, then do the item recommending. Experimental results show that the PCCTTF method has better prediction accuracy than classical collaborative filtering technique and the state-of-the-art recommender methods, and can also effectively alleviate data sparsity and cold-start problem. Furthermore, the PCCTTF method has better performance than all the compared methods while counting against shilling attacks. 展开更多
关键词 recommender systems social trust collaborative filtering item tags
原文传递
Fusion Recommendation System Based on Collaborative Filtering and Knowledge Graph 被引量:3
18
作者 Donglei Lu Dongjie Zhu +6 位作者 Haiwen Du Yundong Sun Yansong Wang Xiaofang Li Rongning Qu Ning Cao Russell Higgs 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1133-1146,共14页
The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. F... The recommendation algorithm based on collaborative filtering is currently the most successful recommendation method. It recommends items to theuser based on the known historical interaction data of the target user. Furthermore,the combination of the recommended algorithm based on collaborative filtrationand other auxiliary knowledge base is an effective way to improve the performance of the recommended system, of which the Co-Factorization Model(CoFM) is one representative research. CoFM, a fusion recommendation modelcombining the collaborative filtering model FM and the graph embeddingmodel TransE, introduces the information of many entities and their relationsin the knowledge graph into the recommendation system as effective auxiliaryinformation. It can effectively improve the accuracy of recommendations andalleviate the problem of sparse user historical interaction data. Unfortunately,the graph-embedded model TransE used in the CoFM model cannot solve the1-N, N-1, and N-N problems well. To tackle this problem, a novel fusion recommendation model Joint Factorization Machines and TransH Model (JFMH) isproposed, which improves CoFM by replacing the TransE model with TransHmodel. A large number of experiments on two widely used benchmark data setsshow that compared with CoFM, JFMH has improved performance in terms ofitem recommendation and knowledge graph completion, and is more competitivethan multiple baseline methods. 展开更多
关键词 Fusion recommendation system knowledge graph graph embedding
在线阅读 下载PDF
Fuzzy-Weighted Similarity Measures for Memory-Based Collaborative Recommender Systems 被引量:4
19
作者 Mohammad Yahya H. Al-Shamri Nagi H. Al-Ashwal 《Journal of Intelligent Learning Systems and Applications》 2014年第1期1-10,共10页
Memory-based collaborative recommender system (CRS) computes the similarity between users based on their declared ratings. However, not all ratings are of the same importance to the user. The set of ratings each user ... Memory-based collaborative recommender system (CRS) computes the similarity between users based on their declared ratings. However, not all ratings are of the same importance to the user. The set of ratings each user weights highly differs from user to user according to his mood and taste. This is usually reflected in the user’s rating scale. Accordingly, many efforts have been done to introduce weights to the similarity measures of CRSs. This paper proposes fuzzy weightings for the most common similarity measures for memory-based CRSs. Fuzzy weighting can be considered as a learning mechanism for capturing the preferences of users for ratings. Comparing with genetic algorithm learning, fuzzy weighting is fast, effective and does not require any more space. Moreover, fuzzy weightings based on the rating deviations from the user’s mean of ratings take into account the different rating scales of different users. The experimental results show that fuzzy weightings obviously improve the CRSs performance to a good extent. 展开更多
关键词 COLLABORATIVE recommendER systems Pearson Correlation Coefficient COSINE SIMILARITY MEASURE Mean Difference Weights SIMILARITY MEASURE FUZZY Weighting
在线阅读 下载PDF
Design and Implementation of Book Recommendation Management System Based on Improved Apriori Algorithm 被引量:2
20
作者 Yingwei Zhou 《Intelligent Information Management》 2020年第3期75-87,共13页
The traditional Apriori applied in books management system causes slow system operation due to frequent scanning of database and excessive quantity of candidate item-sets, so an information recommendation book managem... The traditional Apriori applied in books management system causes slow system operation due to frequent scanning of database and excessive quantity of candidate item-sets, so an information recommendation book management system based on improved Apriori data mining algorithm is designed, in which the C/S (client/server) architecture and B/S (browser/server) architecture are integrated, so as to open the book information to library staff and borrowers. The related information data of the borrowers and books can be extracted from books lending database by the data preprocessing sub-module in the system function module. After the data is cleaned, converted and integrated, the association rule mining sub-module is used to mine the strong association rules with support degree greater than minimum support degree threshold and confidence coefficient greater than minimum confidence coefficient threshold according to the processed data and by means of the improved Apriori data mining algorithm to generate association rule database. The association matching is performed by the personalized recommendation sub-module according to the borrower and his selected books in the association rule database. The book information associated with the books read by borrower is recommended to him to realize personalized recommendation of the book information. The experimental results show that the system can effectively recommend book related information, and its CPU occupation rate is only 6.47% under the condition that 50 clients are running it at the same time. Anyway, it has good performance. 展开更多
关键词 Information recommendATION BOOK Management APRIORI Algorithm Data Mining Association RULE PERSONALIZED recommendATION
在线阅读 下载PDF
上一页 1 2 240 下一页 到第
使用帮助 返回顶部