The interpretation of geological structures on earth observation images involves like many other domains to both visual observation as well as specialized knowledge. To help this process and make it more objective, we...The interpretation of geological structures on earth observation images involves like many other domains to both visual observation as well as specialized knowledge. To help this process and make it more objective, we propose a method to extract the components of complex shapes with a geological significance. Thus, remote sensing allows the production of digital recordings reflecting the objects’ brightness measures on the soil. These recordings are often presented as images and ready to be computer automatically processed. The numerical techniques used exploit the morphology ma- thematical transformations properties. Presentation shows the operations’ sequences with tailored properties. The example shown is a portion of an anticline fraction in which the organization shows clearly oriented entities. The results are obtained by a procedure with an interest in the geological reasoning: it is the extraction of entities involved in the observed structure and the exploration of the main direction of a set of objects striking the structure. Extraction of elementary entities is made by their physical and physiognomic characteristics recognition such as reflectance, the shadow effect, size, shape or orientation. The resulting image must then be stripped frequently of many artifacts. Another sequence has been developed to minimize the noise due to the direct identification of physical measures contained in the image. Data from different spectral bands are first filtered by an operator of grayscale morphology to remove high frequency spatial components. The image then obtained in the treatment that follows is therefore more compact and closer to the needs of the geologist. The search for significant overall direction comes from interception measures sampling a rotation from 0 to 180 degrees. The results obtained show a clear geological significance of the organization of the extracted objects.展开更多
An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction...An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction,was conducted to extract useful feature information and recognize and classify rock images using Tensor Flow-based convolutional neural network(CNN)and Py Qt5.A rock image dataset was established and separated into workouts,confirmation sets,and test sets.The framework was subsequently compiled and trained.The categorization approach was evaluated using image data from the validation and test datasets,and key metrics,such as accuracy,precision,and recall,were analyzed.Finally,the classification model conducted a probabilistic analysis of the measured data to determine the equivalent lithological type for each image.The experimental results indicated that the method combining deep learning,Tensor Flow-based CNN,and Py Qt5 to recognize and classify rock images has an accuracy rate of up to 98.8%,and can be successfully utilized for rock image recognition.The system can be extended to geological exploration,mine engineering,and other rock and mineral resource development to more efficiently and accurately recognize rock samples.Moreover,it can match them with the intelligent support design system to effectively improve the reliability and economy of the support scheme.The system can serve as a reference for supporting the design of other mining and underground space projects.展开更多
Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situ...Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.展开更多
The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for he...The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.展开更多
As an essential field of multimedia and computer vision,3D shape recognition has attracted much research attention in recent years.Multiview-based approaches have demonstrated their superiority in generating effective...As an essential field of multimedia and computer vision,3D shape recognition has attracted much research attention in recent years.Multiview-based approaches have demonstrated their superiority in generating effective 3D shape representations.Typical methods usually extract the multiview global features and aggregate them together to generate 3D shape descriptors.However,there exist two disadvantages:First,the mainstream methods ignore the comprehensive exploration of local information in each view.Second,many approaches roughly aggregate multiview features by adding or concatenating them together.The information loss for some discriminative characteristics limits the representation effectiveness.To address these problems,a novel architecture named region-based joint attention network(RJAN)was proposed.Specifically,the authors first design a hierarchical local information exploration module for view descriptor extraction.The region-to-region and channel-to-channel relationships from different granularities can be comprehensively explored and utilised to provide more discriminative characteristics for view feature learning.Subsequently,a novel relation-aware view aggregation module is designed to aggregate the multiview features for shape descriptor generation,considering the view-to-view relationships.Extensive experiments were conducted on three public databases:ModelNet40,ModelNet10,and ShapeNetCore55.RJAN achieves state-of-the-art performance in the tasks of 3D shape classification and 3D shape retrieval,which demonstrates the effectiveness of RJAN.The code has been released on https://github.com/slurrpp/RJAN.展开更多
A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can ...A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can bottom spray code number recognition.In the coding number detection stage,Differentiable Binarization Network is used as the backbone network,combined with the Attention and Dilation Convolutions Path Aggregation Network feature fusion structure to enhance the model detection effect.In terms of text recognition,using the Scene Visual Text Recognition coding number recognition network for end-to-end training can alleviate the problem of coding recognition errors caused by image color distortion due to variations in lighting and background noise.In addition,model pruning and quantization are used to reduce the number ofmodel parameters to meet deployment requirements in resource-constrained environments.A comparative experiment was conducted using the dataset of tank bottom spray code numbers collected on-site,and a transfer experiment was conducted using the dataset of packaging box production date.The experimental results show that the algorithm proposed in this study can effectively locate the coding of cans at different positions on the roller conveyor,and can accurately identify the coding numbers at high production line speeds.The Hmean value of the coding number detection is 97.32%,and the accuracy of the coding number recognition is 98.21%.This verifies that the algorithm proposed in this paper has high accuracy in coding number detection and recognition.展开更多
In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fi...In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research.展开更多
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited...Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.展开更多
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac...In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.展开更多
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr...Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.展开更多
Target occlusion poses a significant challenge in computer vision,particularly in agricultural applications,where occlusion of crops can obscure key features and impair the model’s recognition performance.To address ...Target occlusion poses a significant challenge in computer vision,particularly in agricultural applications,where occlusion of crops can obscure key features and impair the model’s recognition performance.To address this challenge,a mushroom recognition method was proposed based on an erase module integrated into the EL-DenseNet model.EL-DenseNet,an extension of DenseNet,incorporated an erase attention module designed to enhance sensitivity to visible features.The erase module helped eliminate complex backgrounds and irrelevant information,allowing the mushroom body to be preserved and increasing recognition accuracy in cluttered environments.Considering the difficulty in distinguishing similar mushroom species,label smoothing regularization was employed to mitigate mislabeling errors that commonly arose from human observers.This strategy converted hard labels into soft labels during training,reducing the model’s overreliance on noisy labels and improving its generalization ability.Experimental results showed that the proposed EL-DenseNet,when combined with transfer learning,achieved a recognition accuracy of 96.7%for mushrooms in occluded and complex backgrounds.Compared with the original DenseNet and other classic models,this approach demonstrated superior accuracy and robustness,providing a promising solution for intelligent mushroom recognition.展开更多
Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only...Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The dataset consists of 14,186 images across 19 activity classes,from dynamic activities such as running and swimming to static activities such as sitting and sleeping.Preprocessing included resizing all images to 512512 pixels,annotating them in YOLO’s bounding box format,and applying data augmentation methods such as flipping,rotation,and cropping to enhance model generalization.The proposed model was trained for 100 epochs with adaptive learning rate methods and hyperparameter optimization for performance improvement,with a mAP@0.5 of 74.93%and a mAP@0.5-0.95 of 64.11%,outperforming previous versions of YOLO(v10,v9,and v8)and general-purpose architectures like ResNet50 and EfficientNet.It exhibited improved precision and recall for all activity classes with high precision values of 0.76 for running,0.79 for swimming,0.80 for sitting,and 0.81 for sleeping,and was tested for real-time deployment with an inference time of 8.9 ms per image,being computationally light.Proposed YOLOv11’s improvements are attributed to architectural advancements like a more complex feature extraction process,better attention modules,and an anchor-free detection mechanism.While YOLOv10 was extremely stable in static activity recognition,YOLOv9 performed well in dynamic environments but suffered from overfitting,and YOLOv8,while being a decent baseline,failed to differentiate between overlapping static activities.The experimental results determine proposed YOLOv11 to be the most appropriate model,providing an ideal balance between accuracy,computational efficiency,and robustness for real-world deployment.Nevertheless,there exist certain issues to be addressed,particularly in discriminating against visually similar activities and the use of publicly available datasets.Future research will entail the inclusion of 3D data and multimodal sensor inputs,such as depth and motion information,for enhancing recognition accuracy and generalizability to challenging real-world environments.展开更多
In the era of artificial intelligence(AI),healthcare and medical sciences are inseparable from different AI technologies[1].ChatGPT once shocked the medical field,but the latest AI model DeepSeek has recently taken th...In the era of artificial intelligence(AI),healthcare and medical sciences are inseparable from different AI technologies[1].ChatGPT once shocked the medical field,but the latest AI model DeepSeek has recently taken the lead[2].PubMed indexed publications on DeepSeek are evolving[3],but limited to editorials and news articles.In this Letter,we explore the use of DeepSeek in early symptoms recognition for stroke care.To the best of our knowledge,this is the first DeepSeek-related writing on stroke.展开更多
Pill image recognition is an important field in computer vision.It has become a vital technology in healthcare and pharmaceuticals due to the necessity for precise medication identification to prevent errors and ensur...Pill image recognition is an important field in computer vision.It has become a vital technology in healthcare and pharmaceuticals due to the necessity for precise medication identification to prevent errors and ensure patient safety.This survey examines the current state of pill image recognition,focusing on advancements,methodologies,and the challenges that remain unresolved.It provides a comprehensive overview of traditional image processing-based,machine learning-based,deep learning-based,and hybrid-based methods,and aims to explore the ongoing difficulties in the field.We summarize and classify the methods used in each article,compare the strengths and weaknesses of traditional image processing-based,machine learning-based,deep learning-based,and hybrid-based methods,and review benchmark datasets for pill image recognition.Additionally,we compare the performance of proposed methods on popular benchmark datasets.This survey applies recent advancements,such as Transformer models and cutting-edge technologies like Augmented Reality(AR),to discuss potential research directions and conclude the review.By offering a holistic perspective,this paper aims to serve as a valuable resource for researchers and practitioners striving to advance the field of pill image recognition.展开更多
Molecular recognition of bioreceptors and enzymes relies on orthogonal interactions with small molecules within their cavity. To date, Chinese scientists have developed three types of strategies for introducing active...Molecular recognition of bioreceptors and enzymes relies on orthogonal interactions with small molecules within their cavity. To date, Chinese scientists have developed three types of strategies for introducing active sites inside the cavity of macrocyclic arenes to better mimic molecular recognition of bioreceptors and enzymes.The editorial aims to enlighten scientists in this field when they develop novel macrocycles for molecular recognition, supramolecular assembly, and applications.展开更多
Video action recognition(VAR)aims to analyze dynamic behaviors in videos and achieve semantic understanding.VAR faces challenges such as temporal dynamics,action-scene coupling,and the complexity of human interactions...Video action recognition(VAR)aims to analyze dynamic behaviors in videos and achieve semantic understanding.VAR faces challenges such as temporal dynamics,action-scene coupling,and the complexity of human interactions.Existing methods can be categorized into motion-level,event-level,and story-level ones based on spatiotemporal granularity.However,single-modal approaches struggle to capture complex behavioral semantics and human factors.Therefore,in recent years,vision-language models(VLMs)have been introduced into this field,providing new research perspectives for VAR.In this paper,we systematically review spatiotemporal hierarchical methods in VAR and explore how the introduction of large models has advanced the field.Additionally,we propose the concept of“Factor”to identify and integrate key information from both visual and textual modalities,enhancing multimodal alignment.We also summarize various multimodal alignment methods and provide in-depth analysis and insights into future research directions.展开更多
Automated behavior monitoring of macaques offers transformative potential for advancing biomedical research and animal welfare.However,reliably identifying individual macaques in group environments remains a significa...Automated behavior monitoring of macaques offers transformative potential for advancing biomedical research and animal welfare.However,reliably identifying individual macaques in group environments remains a significant challenge.This study introduces ACE-YOLOX,a lightweight facial recognition model tailored for captive macaques.ACE-YOLOX incorporates Efficient Channel Attention(ECA),Complete Intersection over Union loss(CIoU),and Adaptive Spatial Feature Fusion(ASFF)into the YOLOX framework,enhancing prediction accuracy while reducing computational complexity.These integrated approaches enable effective multiscale feature extraction.Using a dataset comprising 179400 labeled facial images from 1196 macaques,ACE-YOLOX surpassed the performance of classical object detection models,demonstrating superior accuracy and real-time processing capabilities.An Android application was also developed to deploy ACE-YOLOX on smartphones,enabling on-device,real-time macaque recognition.Our experimental results highlight the potential of ACE-YOLOX as a non-invasive identification tool,offering an important foundation for future studies in macaque facial expression recognition,cognitive psychology,and social behavior.展开更多
Accessible communication based on sign language recognition(SLR)is the key to emergency medical assistance for the hearing-impaired community.Balancing the capture of both local and global information in SLR for emerg...Accessible communication based on sign language recognition(SLR)is the key to emergency medical assistance for the hearing-impaired community.Balancing the capture of both local and global information in SLR for emergency medicine poses a significant challenge.To address this,we propose a novel approach based on the inter-learning of visual features between global and local information.Specifically,our method enhances the perception capabilities of the visual feature extractor by strategically leveraging the strengths of convolutional neural network(CNN),which are adept at capturing local features,and visual transformers which perform well at perceiving global features.Furthermore,to mitigate the issue of overfitting caused by the limited availability of sign language data for emergency medical applications,we introduce an enhanced short temporal module for data augmentation through additional subsequences.Experimental results on three publicly available sign language datasets demonstrate the efficacy of the proposed approach.展开更多
The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,wi...The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,with applications such as the gravity-only aerial deployment of high-aspect-ratio solar-powered UAVs,and aerial takeoff of fixed-wing drones in Mars research.However,the significant morphological changes during deployment are accompanied by strong nonlinear dynamic aerodynamic forces,which result in multiple degrees of freedom and an unstable character.This hinders the description and analysis of unknown dynamic behaviors,further leading to difficulties in the design of deployment strategies and flight control.To address this issue,this paper proposes an analysis method for dynamic behaviors during aerial deployment based on the Variational Autoencoder(VAE).Focusing on the gravity-only deployment problem of highaspect-ratio foldable-wing UAVs,the method encodes the multi-degree-of-freedom unstable motion signals into a low-dimensional feature space through a data-driven approach.By clustering in the feature space,this paper identifies and studies several dynamic behaviors during aerial deployment.The research presented in this paper offers a new method and perspective for feature extraction and analysis of complex and difficult-to-describe extreme flight dynamics,guiding the research on aerial deployment drones design and control strategies.展开更多
Automated recognition of violent activities from videos is vital for public safety,but often raises significant privacy concerns due to the sensitive nature of the footage.Moreover,resource constraints often hinder th...Automated recognition of violent activities from videos is vital for public safety,but often raises significant privacy concerns due to the sensitive nature of the footage.Moreover,resource constraints often hinder the deployment of deep learning-based complex video classification models on edge devices.With this motivation,this study aims to investigate an effective violent activity classifier while minimizing computational complexity,attaining competitive performance,and mitigating user data privacy concerns.We present a lightweight deep learning architecture with fewer parameters for efficient violent activity recognition.We utilize a two-stream formation of 3D depthwise separable convolution coupled with a linear self-attention mechanism for effective feature extraction,incorporating federated learning to address data privacy concerns.Experimental findings demonstrate the model’s effectiveness with test accuracies from 96%to above 97%on multiple datasets by incorporating the FedProx aggregation strategy.These findings underscore the potential to develop secure,efficient,and reliable solutions for violent activity recognition in real-world scenarios.展开更多
文摘The interpretation of geological structures on earth observation images involves like many other domains to both visual observation as well as specialized knowledge. To help this process and make it more objective, we propose a method to extract the components of complex shapes with a geological significance. Thus, remote sensing allows the production of digital recordings reflecting the objects’ brightness measures on the soil. These recordings are often presented as images and ready to be computer automatically processed. The numerical techniques used exploit the morphology ma- thematical transformations properties. Presentation shows the operations’ sequences with tailored properties. The example shown is a portion of an anticline fraction in which the organization shows clearly oriented entities. The results are obtained by a procedure with an interest in the geological reasoning: it is the extraction of entities involved in the observed structure and the exploration of the main direction of a set of objects striking the structure. Extraction of elementary entities is made by their physical and physiognomic characteristics recognition such as reflectance, the shadow effect, size, shape or orientation. The resulting image must then be stripped frequently of many artifacts. Another sequence has been developed to minimize the noise due to the direct identification of physical measures contained in the image. Data from different spectral bands are first filtered by an operator of grayscale morphology to remove high frequency spatial components. The image then obtained in the treatment that follows is therefore more compact and closer to the needs of the geologist. The search for significant overall direction comes from interception measures sampling a rotation from 0 to 180 degrees. The results obtained show a clear geological significance of the organization of the extracted objects.
基金financially supported by the National Science and Technology Major Project——Deep Earth Probe and Mineral Resources Exploration(No.2024ZD1003701)the National Key R&D Program of China(No.2022YFC2905004)。
文摘An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction,was conducted to extract useful feature information and recognize and classify rock images using Tensor Flow-based convolutional neural network(CNN)and Py Qt5.A rock image dataset was established and separated into workouts,confirmation sets,and test sets.The framework was subsequently compiled and trained.The categorization approach was evaluated using image data from the validation and test datasets,and key metrics,such as accuracy,precision,and recall,were analyzed.Finally,the classification model conducted a probabilistic analysis of the measured data to determine the equivalent lithological type for each image.The experimental results indicated that the method combining deep learning,Tensor Flow-based CNN,and Py Qt5 to recognize and classify rock images has an accuracy rate of up to 98.8%,and can be successfully utilized for rock image recognition.The system can be extended to geological exploration,mine engineering,and other rock and mineral resource development to more efficiently and accurately recognize rock samples.Moreover,it can match them with the intelligent support design system to effectively improve the reliability and economy of the support scheme.The system can serve as a reference for supporting the design of other mining and underground space projects.
基金supported by China Academy of Railway Sciences Corporation Limited(No.2021YJ127).
文摘Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.
基金funded by the ICT Division of theMinistry of Posts,Telecommunications,and Information Technology of Bangladesh under Grant Number 56.00.0000.052.33.005.21-7(Tracking No.22FS15306)support from the University of Rajshahi.
文摘The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.
基金the National Key Research and Development Program of China,Grant/Award Number:2020YFB1711704the National Natural Science Foundation of China,Grant/Award Number:62272337。
文摘As an essential field of multimedia and computer vision,3D shape recognition has attracted much research attention in recent years.Multiview-based approaches have demonstrated their superiority in generating effective 3D shape representations.Typical methods usually extract the multiview global features and aggregate them together to generate 3D shape descriptors.However,there exist two disadvantages:First,the mainstream methods ignore the comprehensive exploration of local information in each view.Second,many approaches roughly aggregate multiview features by adding or concatenating them together.The information loss for some discriminative characteristics limits the representation effectiveness.To address these problems,a novel architecture named region-based joint attention network(RJAN)was proposed.Specifically,the authors first design a hierarchical local information exploration module for view descriptor extraction.The region-to-region and channel-to-channel relationships from different granularities can be comprehensively explored and utilised to provide more discriminative characteristics for view feature learning.Subsequently,a novel relation-aware view aggregation module is designed to aggregate the multiview features for shape descriptor generation,considering the view-to-view relationships.Extensive experiments were conducted on three public databases:ModelNet40,ModelNet10,and ShapeNetCore55.RJAN achieves state-of-the-art performance in the tasks of 3D shape classification and 3D shape retrieval,which demonstrates the effectiveness of RJAN.The code has been released on https://github.com/slurrpp/RJAN.
文摘A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can bottom spray code number recognition.In the coding number detection stage,Differentiable Binarization Network is used as the backbone network,combined with the Attention and Dilation Convolutions Path Aggregation Network feature fusion structure to enhance the model detection effect.In terms of text recognition,using the Scene Visual Text Recognition coding number recognition network for end-to-end training can alleviate the problem of coding recognition errors caused by image color distortion due to variations in lighting and background noise.In addition,model pruning and quantization are used to reduce the number ofmodel parameters to meet deployment requirements in resource-constrained environments.A comparative experiment was conducted using the dataset of tank bottom spray code numbers collected on-site,and a transfer experiment was conducted using the dataset of packaging box production date.The experimental results show that the algorithm proposed in this study can effectively locate the coding of cans at different positions on the roller conveyor,and can accurately identify the coding numbers at high production line speeds.The Hmean value of the coding number detection is 97.32%,and the accuracy of the coding number recognition is 98.21%.This verifies that the algorithm proposed in this paper has high accuracy in coding number detection and recognition.
文摘In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research.
基金the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets.
基金supported by the National Natural Science Foundation of China(62272049,62236006,62172045)the Key Projects of Beijing Union University(ZKZD202301).
文摘In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.
基金supported by the Key Research and Development Program of Jiangsu Province under Grant BE2022059-3,CTBC Bank through the Industry-Academia Cooperation Project,as well as by the Ministry of Science and Technology of Taiwan through Grants MOST-108-2218-E-002-055,MOST-109-2223-E-009-002-MY3,MOST-109-2218-E-009-025,and MOST431109-2218-E-002-015.
文摘Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time.
文摘Target occlusion poses a significant challenge in computer vision,particularly in agricultural applications,where occlusion of crops can obscure key features and impair the model’s recognition performance.To address this challenge,a mushroom recognition method was proposed based on an erase module integrated into the EL-DenseNet model.EL-DenseNet,an extension of DenseNet,incorporated an erase attention module designed to enhance sensitivity to visible features.The erase module helped eliminate complex backgrounds and irrelevant information,allowing the mushroom body to be preserved and increasing recognition accuracy in cluttered environments.Considering the difficulty in distinguishing similar mushroom species,label smoothing regularization was employed to mitigate mislabeling errors that commonly arose from human observers.This strategy converted hard labels into soft labels during training,reducing the model’s overreliance on noisy labels and improving its generalization ability.Experimental results showed that the proposed EL-DenseNet,when combined with transfer learning,achieved a recognition accuracy of 96.7%for mushrooms in occluded and complex backgrounds.Compared with the original DenseNet and other classic models,this approach demonstrated superior accuracy and robustness,providing a promising solution for intelligent mushroom recognition.
基金supported by King Saud University,Riyadh,Saudi Arabia,under Ongoing Research Funding Program(ORF-2025-951).
文摘Human activity recognition is a significant area of research in artificial intelligence for surveillance,healthcare,sports,and human-computer interaction applications.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The article benchmarks the performance of You Only Look Once version 11-based(YOLOv11-based)architecture for multi-class human activity recognition.The dataset consists of 14,186 images across 19 activity classes,from dynamic activities such as running and swimming to static activities such as sitting and sleeping.Preprocessing included resizing all images to 512512 pixels,annotating them in YOLO’s bounding box format,and applying data augmentation methods such as flipping,rotation,and cropping to enhance model generalization.The proposed model was trained for 100 epochs with adaptive learning rate methods and hyperparameter optimization for performance improvement,with a mAP@0.5 of 74.93%and a mAP@0.5-0.95 of 64.11%,outperforming previous versions of YOLO(v10,v9,and v8)and general-purpose architectures like ResNet50 and EfficientNet.It exhibited improved precision and recall for all activity classes with high precision values of 0.76 for running,0.79 for swimming,0.80 for sitting,and 0.81 for sleeping,and was tested for real-time deployment with an inference time of 8.9 ms per image,being computationally light.Proposed YOLOv11’s improvements are attributed to architectural advancements like a more complex feature extraction process,better attention modules,and an anchor-free detection mechanism.While YOLOv10 was extremely stable in static activity recognition,YOLOv9 performed well in dynamic environments but suffered from overfitting,and YOLOv8,while being a decent baseline,failed to differentiate between overlapping static activities.The experimental results determine proposed YOLOv11 to be the most appropriate model,providing an ideal balance between accuracy,computational efficiency,and robustness for real-world deployment.Nevertheless,there exist certain issues to be addressed,particularly in discriminating against visually similar activities and the use of publicly available datasets.Future research will entail the inclusion of 3D data and multimodal sensor inputs,such as depth and motion information,for enhancing recognition accuracy and generalizability to challenging real-world environments.
文摘In the era of artificial intelligence(AI),healthcare and medical sciences are inseparable from different AI technologies[1].ChatGPT once shocked the medical field,but the latest AI model DeepSeek has recently taken the lead[2].PubMed indexed publications on DeepSeek are evolving[3],but limited to editorials and news articles.In this Letter,we explore the use of DeepSeek in early symptoms recognition for stroke care.To the best of our knowledge,this is the first DeepSeek-related writing on stroke.
文摘Pill image recognition is an important field in computer vision.It has become a vital technology in healthcare and pharmaceuticals due to the necessity for precise medication identification to prevent errors and ensure patient safety.This survey examines the current state of pill image recognition,focusing on advancements,methodologies,and the challenges that remain unresolved.It provides a comprehensive overview of traditional image processing-based,machine learning-based,deep learning-based,and hybrid-based methods,and aims to explore the ongoing difficulties in the field.We summarize and classify the methods used in each article,compare the strengths and weaknesses of traditional image processing-based,machine learning-based,deep learning-based,and hybrid-based methods,and review benchmark datasets for pill image recognition.Additionally,we compare the performance of proposed methods on popular benchmark datasets.This survey applies recent advancements,such as Transformer models and cutting-edge technologies like Augmented Reality(AR),to discuss potential research directions and conclude the review.By offering a holistic perspective,this paper aims to serve as a valuable resource for researchers and practitioners striving to advance the field of pill image recognition.
文摘Molecular recognition of bioreceptors and enzymes relies on orthogonal interactions with small molecules within their cavity. To date, Chinese scientists have developed three types of strategies for introducing active sites inside the cavity of macrocyclic arenes to better mimic molecular recognition of bioreceptors and enzymes.The editorial aims to enlighten scientists in this field when they develop novel macrocycles for molecular recognition, supramolecular assembly, and applications.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LQ23F030001)the National Natural Science Foundation of China(No.62406280)+5 种基金the Autism Research Special Fund of Zhejiang Foundation for Disabled Persons(No.2023008)the Liaoning Province Higher Education Innovative Talents Program Support Project(No.LR2019058)the Liaoning Province Joint Open Fund for Key Scientific and Technological Innovation Bases(No.2021-KF-12-05)the Central Guidance on Local Science and Technology Development Fund of Liaoning Province(No.2023JH6/100100066)the Key Laboratory for Biomedical Engineering of Ministry of Education,Zhejiang University,Chinain part by the Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning.
文摘Video action recognition(VAR)aims to analyze dynamic behaviors in videos and achieve semantic understanding.VAR faces challenges such as temporal dynamics,action-scene coupling,and the complexity of human interactions.Existing methods can be categorized into motion-level,event-level,and story-level ones based on spatiotemporal granularity.However,single-modal approaches struggle to capture complex behavioral semantics and human factors.Therefore,in recent years,vision-language models(VLMs)have been introduced into this field,providing new research perspectives for VAR.In this paper,we systematically review spatiotemporal hierarchical methods in VAR and explore how the introduction of large models has advanced the field.Additionally,we propose the concept of“Factor”to identify and integrate key information from both visual and textual modalities,enhancing multimodal alignment.We also summarize various multimodal alignment methods and provide in-depth analysis and insights into future research directions.
基金supported by the grants from Yunnan Province(202305AH340006,202305AH340007)CAS Light of West China Program(xbzg-zdsys-202213)。
文摘Automated behavior monitoring of macaques offers transformative potential for advancing biomedical research and animal welfare.However,reliably identifying individual macaques in group environments remains a significant challenge.This study introduces ACE-YOLOX,a lightweight facial recognition model tailored for captive macaques.ACE-YOLOX incorporates Efficient Channel Attention(ECA),Complete Intersection over Union loss(CIoU),and Adaptive Spatial Feature Fusion(ASFF)into the YOLOX framework,enhancing prediction accuracy while reducing computational complexity.These integrated approaches enable effective multiscale feature extraction.Using a dataset comprising 179400 labeled facial images from 1196 macaques,ACE-YOLOX surpassed the performance of classical object detection models,demonstrating superior accuracy and real-time processing capabilities.An Android application was also developed to deploy ACE-YOLOX on smartphones,enabling on-device,real-time macaque recognition.Our experimental results highlight the potential of ACE-YOLOX as a non-invasive identification tool,offering an important foundation for future studies in macaque facial expression recognition,cognitive psychology,and social behavior.
基金supported by the National Natural Science Foundation of China(No.62376197)the Tianjin Science and Technology Program(No.23JCYBJC00360)the Tianjin Health Research Project(No.TJWJ2025MS045).
文摘Accessible communication based on sign language recognition(SLR)is the key to emergency medical assistance for the hearing-impaired community.Balancing the capture of both local and global information in SLR for emergency medicine poses a significant challenge.To address this,we propose a novel approach based on the inter-learning of visual features between global and local information.Specifically,our method enhances the perception capabilities of the visual feature extractor by strategically leveraging the strengths of convolutional neural network(CNN),which are adept at capturing local features,and visual transformers which perform well at perceiving global features.Furthermore,to mitigate the issue of overfitting caused by the limited availability of sign language data for emergency medical applications,we introduce an enhanced short temporal module for data augmentation through additional subsequences.Experimental results on three publicly available sign language datasets demonstrate the efficacy of the proposed approach.
基金co-supported by the Natural Science Basic Research Program of Shaanxi,China(No.2023-JC-QN-0043)the ND Basic Research Funds,China(No.G2022WD).
文摘The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,with applications such as the gravity-only aerial deployment of high-aspect-ratio solar-powered UAVs,and aerial takeoff of fixed-wing drones in Mars research.However,the significant morphological changes during deployment are accompanied by strong nonlinear dynamic aerodynamic forces,which result in multiple degrees of freedom and an unstable character.This hinders the description and analysis of unknown dynamic behaviors,further leading to difficulties in the design of deployment strategies and flight control.To address this issue,this paper proposes an analysis method for dynamic behaviors during aerial deployment based on the Variational Autoencoder(VAE).Focusing on the gravity-only deployment problem of highaspect-ratio foldable-wing UAVs,the method encodes the multi-degree-of-freedom unstable motion signals into a low-dimensional feature space through a data-driven approach.By clustering in the feature space,this paper identifies and studies several dynamic behaviors during aerial deployment.The research presented in this paper offers a new method and perspective for feature extraction and analysis of complex and difficult-to-describe extreme flight dynamics,guiding the research on aerial deployment drones design and control strategies.
基金Supported by the Research Chair of Online Dialogue and Cultural Communication,King Saud University,Saudi Arabia.
文摘Automated recognition of violent activities from videos is vital for public safety,but often raises significant privacy concerns due to the sensitive nature of the footage.Moreover,resource constraints often hinder the deployment of deep learning-based complex video classification models on edge devices.With this motivation,this study aims to investigate an effective violent activity classifier while minimizing computational complexity,attaining competitive performance,and mitigating user data privacy concerns.We present a lightweight deep learning architecture with fewer parameters for efficient violent activity recognition.We utilize a two-stream formation of 3D depthwise separable convolution coupled with a linear self-attention mechanism for effective feature extraction,incorporating federated learning to address data privacy concerns.Experimental findings demonstrate the model’s effectiveness with test accuracies from 96%to above 97%on multiple datasets by incorporating the FedProx aggregation strategy.These findings underscore the potential to develop secure,efficient,and reliable solutions for violent activity recognition in real-world scenarios.