Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensi...Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensive applications in law enforcement and the commercial domain,and the rapid advancement of practical technologies.Despite the significant advancements,modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions,occlusion,and diverse facial postures.In such scenarios,human perception is still well above the capabilities of present technology.Using the systematic mapping study,this paper presents an in-depth review of face detection algorithms and face recognition algorithms,presenting a detailed survey of advancements made between 2015 and 2024.We analyze key methodologies,highlighting their strengths and restrictions in the application context.Additionally,we examine various datasets used for face detection/recognition datasets focusing on the task-specific applications,size,diversity,and complexity.By analyzing these algorithms and datasets,this survey works as a valuable resource for researchers,identifying the research gap in the field of face detection and recognition and outlining potential directions for future research.展开更多
A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can ...A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can bottom spray code number recognition.In the coding number detection stage,Differentiable Binarization Network is used as the backbone network,combined with the Attention and Dilation Convolutions Path Aggregation Network feature fusion structure to enhance the model detection effect.In terms of text recognition,using the Scene Visual Text Recognition coding number recognition network for end-to-end training can alleviate the problem of coding recognition errors caused by image color distortion due to variations in lighting and background noise.In addition,model pruning and quantization are used to reduce the number ofmodel parameters to meet deployment requirements in resource-constrained environments.A comparative experiment was conducted using the dataset of tank bottom spray code numbers collected on-site,and a transfer experiment was conducted using the dataset of packaging box production date.The experimental results show that the algorithm proposed in this study can effectively locate the coding of cans at different positions on the roller conveyor,and can accurately identify the coding numbers at high production line speeds.The Hmean value of the coding number detection is 97.32%,and the accuracy of the coding number recognition is 98.21%.This verifies that the algorithm proposed in this paper has high accuracy in coding number detection and recognition.展开更多
Load time series analysis is critical for resource management and optimization decisions,especially automated analysis techniques.Existing research has insufficiently interpreted the overall characteristics of samples...Load time series analysis is critical for resource management and optimization decisions,especially automated analysis techniques.Existing research has insufficiently interpreted the overall characteristics of samples,leading to significant differences in load level detection conclusions for samples with different characteristics(trend,seasonality,cyclicality).Achieving automated,feature-adaptive,and quantifiable analysis methods remains a challenge.This paper proposes a Threshold Recognition-based Load Level Detection Algorithm(TRLLD),which effectively identifies different load level regions in samples of arbitrary size and distribution type based on sample characteristics.By utilizing distribution density uniformity,the algorithm classifies data points and ultimately obtains normalized load values.In the feature recognition step,the algorithm employs the Density Uniformity Index Based on Differences(DUID),High Load Level Concentration(HLLC),and Low Load Level Concentration(LLLC)to assess sample characteristics,which are independent of specific load values,providing a standardized perspective on features,ensuring high efficiency and strong interpretability.Compared to traditional methods,the proposed approach demonstrates better adaptive and real-time analysis capabilities.Experimental results indicate that it can effectively identify high load and low load regions in 16 groups of time series samples with different load characteristics,yielding highly interpretable results.The correlation between the DUID and sample density distribution uniformity reaches 98.08%.When introducing 10% MAD intensity noise,the maximum relative error is 4.72%,showcasing high robustness.Notably,it exhibits significant advantages in general and low sample scenarios.展开更多
In this work,a novel electrochemical sensor based on covalent organic framework@carbon black@molecularly imprinted polydopamine(COF@CB@MPDA)was developed for selective recognition and determination of ciprofloxacin(CF...In this work,a novel electrochemical sensor based on covalent organic framework@carbon black@molecularly imprinted polydopamine(COF@CB@MPDA)was developed for selective recognition and determination of ciprofloxacin(CF).COF@CB@MPDA possessed good water dispersibility and was synthesized by the selfpolymerization of dopamine under alkaline conditions in the presence of the COF,CB and CF.The high surface area COF enhanced the adsorption of CF,whilst CB gave the composites high electrical conductivity to improve the sensitivity of the proposed COF@CB@MPDA/glassy carbon electrode(GCE)sensor.The specific recognition of CF by COF@CB@MPDA involved hydrogen bonding and van der Waals interactions.Under optimized conditions,the sensor showed a good linear relationship with CF concentration over the range of 5.0×10^(–7)and 1.0×10^(–4)mol/L,with a limit of detection(LOD)of 9.53×10^(–8)mol/L.Further,the developed sensor exhibited high selectivity,repeatability and stability for CF detection in milk and milk powders.The method used to fabricate the COF@CB@MPDA/GCE sensor could be easily adapted for the selective recognition and detection of other antibacterial agents and organic pollutants in the environment.展开更多
Enantiomer identification is of paramount industrial value and physiological significance.Construction of sensitive chiral sensors with high enantiomeric discrimination ability is highly desirable.In this work,a chira...Enantiomer identification is of paramount industrial value and physiological significance.Construction of sensitive chiral sensors with high enantiomeric discrimination ability is highly desirable.In this work,a chiral covalent organic framework/anodic aluminum oxide(c-COF/AAO)membrane was prepared for electrochemical enantioselective recognition and sensing.Benefiting from the remarkable asymmetry,the asprepared nanofluidic c-COF/AAO presents a distinct ion current rectification(ICR)characteristic,enabling sensitive bioanalysis.In addition,owing to the large surface area,high chemical stability and perfect ion selectivity of chiral COF,the prepared c-COF/AAO membrane presents exceptionally selective mass transport and thereby enables excellent chiral discrimination for S-/R-Naproxen(S-/R-Npx)enantiomers.It is especially noteworthy that the detection limit is achieved as low as 3.88 pmol/L.These results raise the possibility for a facile,stable and low-cost method to carry out sensitive enantioselective recognition and detection.展开更多
The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children a...The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children and adolescents who are increasingly exposed to online grooming crimes.Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims.However,research on grooming detection in South Korea remains limited,as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations,leading to inaccurate classifications.To address these issues,this study proposes a novel framework that integrates optical character recognition(OCR)technology with KcELECTRA,a deep learning-based natural language processing(NLP)model that shows excellent performance in processing the colloquial Korean language.In the proposed framework,the KcELECTRA model is fine-tuned by an extensive dataset,including Korean social media conversations,Korean ethical verification data from AI-Hub,and Korean hate speech data from Hug-gingFace,to enable more accurate classification of text extracted from social media conversation images.Experimental results show that the proposed framework achieves an accuracy of 0.953,outperforming existing transformer-based models.Furthermore,OCR technology shows high accuracy in extracting text from images,demonstrating that the proposed framework is effective for online grooming detection.The proposed framework is expected to contribute to the more accurate detection of grooming text and the prevention of grooming-related crimes.展开更多
Gesture detection is the primary and most significant step for sign language detection and sign language is the communication medium for people with speaking and hearing disabilities. This paper presents a novel metho...Gesture detection is the primary and most significant step for sign language detection and sign language is the communication medium for people with speaking and hearing disabilities. This paper presents a novel method for dynamic hand gesture detection using Hidden Markov Models (HMMs) where we detect different English alphabet letters by tracing hand movements. The process involves skin color-based segmentation for hand isolation in video frames, followed by morphological operations to enhance image trajectories. Our system employs hand tracking and trajectory smoothing techniques, such as the Kalman filter, to monitor hand movements and refine gesture paths. Quantized sequences are then analyzed using the Baum-Welch Re-estimation Algorithm, an HMM-based approach. A maximum likelihood classifier is used to identify the most probable letter from the test sequences. Our method demonstrates significant improvements over traditional recognition techniques in real-time, automatic hand gesture recognition, particularly in its ability to distinguish complex gestures. The experimental results confirm the effectiveness of our approach in enhancing gesture-based sign language detection to alleviate the barrier between the deaf and hard-of-hearing community and general people.展开更多
Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being...Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts.The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns.This study presents novel lightweight DL models,known as Cybernet models,for the detection and recognition of various cyber Distributed Denial of Service(DDoS)attacks.These models were constructed to have a reasonable number of learnable parameters,i.e.,less than 225,000,hence the name“lightweight.”This not only helps reduce the number of computations required but also results in faster training and inference times.Additionally,these models were designed to extract features in parallel from 1D Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),which makes them unique compared to earlier existing architectures and results in better performance measures.To validate their robustness and effectiveness,they were tested on the CIC-DDoS2019 dataset,which is an imbalanced and large dataset that contains different types of DDoS attacks.Experimental results revealed that bothmodels yielded promising results,with 99.99% for the detectionmodel and 99.76% for the recognition model in terms of accuracy,precision,recall,and F1 score.Furthermore,they outperformed the existing state-of-the-art models proposed for the same task.Thus,the proposed models can be used in cyber security research domains to successfully identify different types of attacks with a high detection and recognition rate.展开更多
In this paper, approaches are presented for the thresholding, detection, tracking and recognition of the road signs as part of an Advanced Driver Assistance System (ADAS). In all these approaches, feature extraction i...In this paper, approaches are presented for the thresholding, detection, tracking and recognition of the road signs as part of an Advanced Driver Assistance System (ADAS). In all these approaches, feature extraction is the backbone, whereas detection and recognition require the use of detectors and classifiers, respectively. In this, two issues are dominant: 1) Tackling the variability involved in the lighting conditions, sizes, and shapes of the road signs after segregating them from a world scene, and 2) Focusing on inaccurate fuzzy modeling arising due to the improper distribution of pixel intensities. The variability is overcome with the uncertainty representation using the information sets, an extension of fuzzy sets, whereas the incorrect fuzzy modeling is rectified using the pervasive information sets, an extension of intuitionistic fuzzy sets. The development of the intuitionistic fuzzy transform paralleling the fuzzy entropy function paves the way for the formulation of different hesitancy features by cashing in on the non-membership function. Next, promulgation of the Hanman law prescribes the fuzzy gradient/divergent values for different tasks. The notable landmarks of this work are the creation of a Color-Based Detector (CBD), derivation of the incremental hesitancy features accrued from the color histograms and the formulation of a variant of the Hanman Transform Classifier using Convolutional Neural Network (CNN) features. We have used the Belgium dataset to vindicate the efficacy of the proposed methods.展开更多
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro...The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities.展开更多
Damage to parcels reduces customer satisfactionwith delivery services and increases return-logistics costs.This can be prevented by detecting and addressing the damage before the parcels reach the customer.Consequentl...Damage to parcels reduces customer satisfactionwith delivery services and increases return-logistics costs.This can be prevented by detecting and addressing the damage before the parcels reach the customer.Consequently,various studies have been conducted on deep learning techniques related to the detection of parcel damage.This study proposes a deep learning-based damage detectionmethod for various types of parcels.Themethod is intended to be part of a parcel information-recognition systemthat identifies the volume and shipping information of parcels,and determines whether they are damaged;this method is intended for use in the actual parcel-transportation process.For this purpose,1)the study acquired image data in an environment simulating the actual parcel-transportation process,and 2)the training dataset was expanded based on StyleGAN3 with adaptive discriminator augmentation.Additionally,3)a preliminary distinction was made between the appearance of parcels and their damage status to enhance the performance of the parcel damage detection model and analyze the causes of parcel damage.Finally,using the dataset constructed based on the proposed method,a damage type detection model was trained,and its mean average precision was confirmed.This model can improve customer satisfaction and reduce return costs for parcel delivery companies.展开更多
During the test on transient pressure signal in explosion field,false trigger caused by field interference can lead to test failure.To improve the stability of test system,a signal detection and recognition technology...During the test on transient pressure signal in explosion field,false trigger caused by field interference can lead to test failure.To improve the stability of test system,a signal detection and recognition technology is proposed for transient pressure test system.In the process of signal acquisition,firstly,electrical levels are monitored in real time to find effective abrupt changes and mark them;then the effective data segments are detecdted totected;thus the effective signals can be acquired in turn finally.The experimental results show that the shock wave signal can be collected effectively and the reliability of the test system can be improved after removal of interferences.展开更多
To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transfo...To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transformation. Then, the colors of traffic lights are detected with color space transformation. Finally, self-associative memory is used to recognize the countdown characters of the traffic lights. Test results at 20 real intersections show that the ratio of correct stabling siding recognition reaches up to 90%;and the ratios of recognition of traffic lights and divided characters are 85% and 97%, respectively. The research proves that the method is efficient for the detection of stabling siding and is robust enough to recognize the characters from images with noise and broken edges.展开更多
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable...Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.展开更多
The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approac...The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health.展开更多
In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,par...In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,particularly in snowy environments,remains a challenge.Snow-covered roads introduce unpredictable surface conditions,occlusions,and reduced visibility,that require robust and adaptive path detection algorithms.This paper presents an enhanced road detection framework for snowy environments,leveraging Simple Framework forContrastive Learning of Visual Representations(SimCLR)for Self-Supervised pretraining,hyperparameter optimization,and uncertainty-aware object detection to improve the performance of YouOnly Look Once version 8(YOLOv8).Themodel is trained and evaluated on a custom-built dataset collected from snowy roads in Tromsø,Norway,which covers a range of snow textures,illumination conditions,and road geometries.The proposed framework achieves scores in terms of mAP@50 equal to 99%and mAP@50–95 equal to 97%,demonstrating the effectiveness of YOLOv8 for real-time road detection in extreme winter conditions.The findings contribute to the safe and reliable deployment of autonomous vehicles in Arctic environments,enabling robust decision-making in hazardous weather conditions.This research lays the groundwork for more resilient perceptionmodels in self-driving systems,paving the way for the future development of intelligent and adaptive transportation networks.展开更多
With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a c...With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.展开更多
Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for glo...Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for global food security and ecological balance.Currently,traditional detection strategies for monitoring plant health mainly rely on expensive equipment and complex operational procedures,which limit their widespread application.Fortunately,near-infrared(NIR)fluorescence and surface-enhanced Raman scattering(SERS)techniques have been recently highlighted in plants.NIR fluorescence imaging holds the advantages of being non-invasive,high-resolution and real-time,which is suitable for rapid screening in large-scale scenarios.While SERS enables highly sensitive and specific detection of trace chemical substances within plant tissues.Therefore,the complementarity of NIR fluorescence and SERS modalities can provide more comprehensive and accurate information for plant disease diagnosis and growth status monitoring.This article summarizes these two modalities in plant applications,and discusses the advantages of multimodal NIR fluorescence/SERS for a better understanding of a plant’s response to stress,thereby improving the accuracy and sensitivity of detection.展开更多
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram...An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.展开更多
In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a s...In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a serious threat to patients’lives and health.A colonoscopy is an important means of detecting colon polyps.However,in polyp imaging,due to the large differences and diverse types of polyps in size,shape,color,etc.,traditional detection methods face the problem of high false positive rates,which creates problems for doctors during the diagnosis process.In order to improve the accuracy and efficiency of colon polyp detection,this question proposes a network model suitable for colon polyp detection(PD-YOLO).This method introduces the self-attention mechanism CBAM(Convolutional Block Attention Module)in the backbone layer based on YOLOv7,allowing themodel to adaptively focus on key information and ignore the unimportant parts.To help themodel do a better job of polyp localization and bounding box regression,add the SPD-Conv(Symmetric Positive Definite Convolution)module to the neck layer and use deconvolution instead of upsampling.Theexperimental results indicate that the PD-YOLO algorithm demonstrates strong robustness in colon polyp detection.Compared to the original YOLOv7,on the Kvasir-SEG dataset,PD-YOLO has shown an increase of 5.44 percentage points in AP@0.5,showcasing significant advantages over other mainstream methods.展开更多
文摘Face recognition has emerged as one of the most prominent applications of image analysis and under-standing,gaining considerable attention in recent years.This growing interest is driven by two key factors:its extensive applications in law enforcement and the commercial domain,and the rapid advancement of practical technologies.Despite the significant advancements,modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions,occlusion,and diverse facial postures.In such scenarios,human perception is still well above the capabilities of present technology.Using the systematic mapping study,this paper presents an in-depth review of face detection algorithms and face recognition algorithms,presenting a detailed survey of advancements made between 2015 and 2024.We analyze key methodologies,highlighting their strengths and restrictions in the application context.Additionally,we examine various datasets used for face detection/recognition datasets focusing on the task-specific applications,size,diversity,and complexity.By analyzing these algorithms and datasets,this survey works as a valuable resource for researchers,identifying the research gap in the field of face detection and recognition and outlining potential directions for future research.
文摘A two-stage algorithm based on deep learning for the detection and recognition of can bottom spray codes and numbers is proposed to address the problems of small character areas and fast production line speeds in can bottom spray code number recognition.In the coding number detection stage,Differentiable Binarization Network is used as the backbone network,combined with the Attention and Dilation Convolutions Path Aggregation Network feature fusion structure to enhance the model detection effect.In terms of text recognition,using the Scene Visual Text Recognition coding number recognition network for end-to-end training can alleviate the problem of coding recognition errors caused by image color distortion due to variations in lighting and background noise.In addition,model pruning and quantization are used to reduce the number ofmodel parameters to meet deployment requirements in resource-constrained environments.A comparative experiment was conducted using the dataset of tank bottom spray code numbers collected on-site,and a transfer experiment was conducted using the dataset of packaging box production date.The experimental results show that the algorithm proposed in this study can effectively locate the coding of cans at different positions on the roller conveyor,and can accurately identify the coding numbers at high production line speeds.The Hmean value of the coding number detection is 97.32%,and the accuracy of the coding number recognition is 98.21%.This verifies that the algorithm proposed in this paper has high accuracy in coding number detection and recognition.
文摘Load time series analysis is critical for resource management and optimization decisions,especially automated analysis techniques.Existing research has insufficiently interpreted the overall characteristics of samples,leading to significant differences in load level detection conclusions for samples with different characteristics(trend,seasonality,cyclicality).Achieving automated,feature-adaptive,and quantifiable analysis methods remains a challenge.This paper proposes a Threshold Recognition-based Load Level Detection Algorithm(TRLLD),which effectively identifies different load level regions in samples of arbitrary size and distribution type based on sample characteristics.By utilizing distribution density uniformity,the algorithm classifies data points and ultimately obtains normalized load values.In the feature recognition step,the algorithm employs the Density Uniformity Index Based on Differences(DUID),High Load Level Concentration(HLLC),and Low Load Level Concentration(LLLC)to assess sample characteristics,which are independent of specific load values,providing a standardized perspective on features,ensuring high efficiency and strong interpretability.Compared to traditional methods,the proposed approach demonstrates better adaptive and real-time analysis capabilities.Experimental results indicate that it can effectively identify high load and low load regions in 16 groups of time series samples with different load characteristics,yielding highly interpretable results.The correlation between the DUID and sample density distribution uniformity reaches 98.08%.When introducing 10% MAD intensity noise,the maximum relative error is 4.72%,showcasing high robustness.Notably,it exhibits significant advantages in general and low sample scenarios.
基金supported by the Project of Key R&D Program of Shandong Province(2023CXGC010712).Geoffrey I.N.
文摘In this work,a novel electrochemical sensor based on covalent organic framework@carbon black@molecularly imprinted polydopamine(COF@CB@MPDA)was developed for selective recognition and determination of ciprofloxacin(CF).COF@CB@MPDA possessed good water dispersibility and was synthesized by the selfpolymerization of dopamine under alkaline conditions in the presence of the COF,CB and CF.The high surface area COF enhanced the adsorption of CF,whilst CB gave the composites high electrical conductivity to improve the sensitivity of the proposed COF@CB@MPDA/glassy carbon electrode(GCE)sensor.The specific recognition of CF by COF@CB@MPDA involved hydrogen bonding and van der Waals interactions.Under optimized conditions,the sensor showed a good linear relationship with CF concentration over the range of 5.0×10^(–7)and 1.0×10^(–4)mol/L,with a limit of detection(LOD)of 9.53×10^(–8)mol/L.Further,the developed sensor exhibited high selectivity,repeatability and stability for CF detection in milk and milk powders.The method used to fabricate the COF@CB@MPDA/GCE sensor could be easily adapted for the selective recognition and detection of other antibacterial agents and organic pollutants in the environment.
基金supported by grants from the National Natural Science Foundation of China(Nos.22274076,22304084)the Primary Research&Development Plan of Jiangsu Province(No.BE2022793)+1 种基金the Natural Science Foundation of Jiangsu Province of China(No.BK20230377)Jiangsu Provincial Department of Education(No.211090B52303)。
文摘Enantiomer identification is of paramount industrial value and physiological significance.Construction of sensitive chiral sensors with high enantiomeric discrimination ability is highly desirable.In this work,a chiral covalent organic framework/anodic aluminum oxide(c-COF/AAO)membrane was prepared for electrochemical enantioselective recognition and sensing.Benefiting from the remarkable asymmetry,the asprepared nanofluidic c-COF/AAO presents a distinct ion current rectification(ICR)characteristic,enabling sensitive bioanalysis.In addition,owing to the large surface area,high chemical stability and perfect ion selectivity of chiral COF,the prepared c-COF/AAO membrane presents exceptionally selective mass transport and thereby enables excellent chiral discrimination for S-/R-Naproxen(S-/R-Npx)enantiomers.It is especially noteworthy that the detection limit is achieved as low as 3.88 pmol/L.These results raise the possibility for a facile,stable and low-cost method to carry out sensitive enantioselective recognition and detection.
基金supported by the IITP(Institute of Information&Communications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korean government(Ministry of Science and ICT)(IITP-2025-RS-2024-00438056).
文摘The increased accessibility of social networking services(SNSs)has facilitated communication and information sharing among users.However,it has also heightened concerns about digital safety,particularly for children and adolescents who are increasingly exposed to online grooming crimes.Early and accurate identification of grooming conversations is crucial in preventing long-term harm to victims.However,research on grooming detection in South Korea remains limited,as existing models trained primarily on English text and fail to reflect the unique linguistic features of SNS conversations,leading to inaccurate classifications.To address these issues,this study proposes a novel framework that integrates optical character recognition(OCR)technology with KcELECTRA,a deep learning-based natural language processing(NLP)model that shows excellent performance in processing the colloquial Korean language.In the proposed framework,the KcELECTRA model is fine-tuned by an extensive dataset,including Korean social media conversations,Korean ethical verification data from AI-Hub,and Korean hate speech data from Hug-gingFace,to enable more accurate classification of text extracted from social media conversation images.Experimental results show that the proposed framework achieves an accuracy of 0.953,outperforming existing transformer-based models.Furthermore,OCR technology shows high accuracy in extracting text from images,demonstrating that the proposed framework is effective for online grooming detection.The proposed framework is expected to contribute to the more accurate detection of grooming text and the prevention of grooming-related crimes.
文摘Gesture detection is the primary and most significant step for sign language detection and sign language is the communication medium for people with speaking and hearing disabilities. This paper presents a novel method for dynamic hand gesture detection using Hidden Markov Models (HMMs) where we detect different English alphabet letters by tracing hand movements. The process involves skin color-based segmentation for hand isolation in video frames, followed by morphological operations to enhance image trajectories. Our system employs hand tracking and trajectory smoothing techniques, such as the Kalman filter, to monitor hand movements and refine gesture paths. Quantized sequences are then analyzed using the Baum-Welch Re-estimation Algorithm, an HMM-based approach. A maximum likelihood classifier is used to identify the most probable letter from the test sequences. Our method demonstrates significant improvements over traditional recognition techniques in real-time, automatic hand gesture recognition, particularly in its ability to distinguish complex gestures. The experimental results confirm the effectiveness of our approach in enhancing gesture-based sign language detection to alleviate the barrier between the deaf and hard-of-hearing community and general people.
文摘Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts.The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns.This study presents novel lightweight DL models,known as Cybernet models,for the detection and recognition of various cyber Distributed Denial of Service(DDoS)attacks.These models were constructed to have a reasonable number of learnable parameters,i.e.,less than 225,000,hence the name“lightweight.”This not only helps reduce the number of computations required but also results in faster training and inference times.Additionally,these models were designed to extract features in parallel from 1D Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),which makes them unique compared to earlier existing architectures and results in better performance measures.To validate their robustness and effectiveness,they were tested on the CIC-DDoS2019 dataset,which is an imbalanced and large dataset that contains different types of DDoS attacks.Experimental results revealed that bothmodels yielded promising results,with 99.99% for the detectionmodel and 99.76% for the recognition model in terms of accuracy,precision,recall,and F1 score.Furthermore,they outperformed the existing state-of-the-art models proposed for the same task.Thus,the proposed models can be used in cyber security research domains to successfully identify different types of attacks with a high detection and recognition rate.
文摘In this paper, approaches are presented for the thresholding, detection, tracking and recognition of the road signs as part of an Advanced Driver Assistance System (ADAS). In all these approaches, feature extraction is the backbone, whereas detection and recognition require the use of detectors and classifiers, respectively. In this, two issues are dominant: 1) Tackling the variability involved in the lighting conditions, sizes, and shapes of the road signs after segregating them from a world scene, and 2) Focusing on inaccurate fuzzy modeling arising due to the improper distribution of pixel intensities. The variability is overcome with the uncertainty representation using the information sets, an extension of fuzzy sets, whereas the incorrect fuzzy modeling is rectified using the pervasive information sets, an extension of intuitionistic fuzzy sets. The development of the intuitionistic fuzzy transform paralleling the fuzzy entropy function paves the way for the formulation of different hesitancy features by cashing in on the non-membership function. Next, promulgation of the Hanman law prescribes the fuzzy gradient/divergent values for different tasks. The notable landmarks of this work are the creation of a Color-Based Detector (CBD), derivation of the incremental hesitancy features accrued from the color histograms and the formulation of a variant of the Hanman Transform Classifier using Convolutional Neural Network (CNN) features. We have used the Belgium dataset to vindicate the efficacy of the proposed methods.
基金supported by theKorea Industrial Technology Association(KOITA)Grant Funded by the Korean government(MSIT)(No.KOITA-2023-3-003)supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2024-2020-0-01808)Supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)。
文摘The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities.
基金supported by a Korea Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure,and Transport(Grant 1615013176)(https://www.kaia.re.kr/eng/main.do,accessed on 01/06/2024)supported by a Korea Evaluation Institute of Industrial Technology(KEIT)grant funded by the Korean Government(MOTIE)(141518499)(https://www.keit.re.kr/index.es?sid=a2,accessed on 01/06/2024).
文摘Damage to parcels reduces customer satisfactionwith delivery services and increases return-logistics costs.This can be prevented by detecting and addressing the damage before the parcels reach the customer.Consequently,various studies have been conducted on deep learning techniques related to the detection of parcel damage.This study proposes a deep learning-based damage detectionmethod for various types of parcels.Themethod is intended to be part of a parcel information-recognition systemthat identifies the volume and shipping information of parcels,and determines whether they are damaged;this method is intended for use in the actual parcel-transportation process.For this purpose,1)the study acquired image data in an environment simulating the actual parcel-transportation process,and 2)the training dataset was expanded based on StyleGAN3 with adaptive discriminator augmentation.Additionally,3)a preliminary distinction was made between the appearance of parcels and their damage status to enhance the performance of the parcel damage detection model and analyze the causes of parcel damage.Finally,using the dataset constructed based on the proposed method,a damage type detection model was trained,and its mean average precision was confirmed.This model can improve customer satisfaction and reduce return costs for parcel delivery companies.
基金The 11th Postgraduate Technology Innovation Project of North University of China(No.20141142)
文摘During the test on transient pressure signal in explosion field,false trigger caused by field interference can lead to test failure.To improve the stability of test system,a signal detection and recognition technology is proposed for transient pressure test system.In the process of signal acquisition,firstly,electrical levels are monitored in real time to find effective abrupt changes and mark them;then the effective data segments are detecdted totected;thus the effective signals can be acquired in turn finally.The experimental results show that the shock wave signal can be collected effectively and the reliability of the test system can be improved after removal of interferences.
基金The Cultivation Fund of the Key Scientific and Technical Innovation Project of Higher Education of Ministry of Education (No.705020)
文摘To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transformation. Then, the colors of traffic lights are detected with color space transformation. Finally, self-associative memory is used to recognize the countdown characters of the traffic lights. Test results at 20 real intersections show that the ratio of correct stabling siding recognition reaches up to 90%;and the ratios of recognition of traffic lights and divided characters are 85% and 97%, respectively. The research proves that the method is efficient for the detection of stabling siding and is robust enough to recognize the characters from images with noise and broken edges.
文摘Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.
基金supported by the National Natural Science Foundation of China(No.U21A20290)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011656)+2 种基金the Projects of Talents Recruitment of GDUPT(No.2023rcyj1003)the 2022“Sail Plan”Project of Maoming Green Chemical Industry Research Institute(No.MMGCIRI2022YFJH-Y-024)Maoming Science and Technology Project(No.2023382).
文摘The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health.
文摘In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,particularly in snowy environments,remains a challenge.Snow-covered roads introduce unpredictable surface conditions,occlusions,and reduced visibility,that require robust and adaptive path detection algorithms.This paper presents an enhanced road detection framework for snowy environments,leveraging Simple Framework forContrastive Learning of Visual Representations(SimCLR)for Self-Supervised pretraining,hyperparameter optimization,and uncertainty-aware object detection to improve the performance of YouOnly Look Once version 8(YOLOv8).Themodel is trained and evaluated on a custom-built dataset collected from snowy roads in Tromsø,Norway,which covers a range of snow textures,illumination conditions,and road geometries.The proposed framework achieves scores in terms of mAP@50 equal to 99%and mAP@50–95 equal to 97%,demonstrating the effectiveness of YOLOv8 for real-time road detection in extreme winter conditions.The findings contribute to the safe and reliable deployment of autonomous vehicles in Arctic environments,enabling robust decision-making in hazardous weather conditions.This research lays the groundwork for more resilient perceptionmodels in self-driving systems,paving the way for the future development of intelligent and adaptive transportation networks.
基金the Experimental Technology Research Project of Zhejiang University(SYB202138)National Natural Science Foundation of China(32000195)。
文摘With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.
基金funded by the National Natural Science Foundation of China(Nos.22374055,22022404,22074050,82172055)the National Natural Science Foundation of Hubei Province(No.22022CFA033)the Fundamental Research Funds for the Central Universities(Nos.CCNU24JCPT001,CCNU24JCPT020)。
文摘Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for global food security and ecological balance.Currently,traditional detection strategies for monitoring plant health mainly rely on expensive equipment and complex operational procedures,which limit their widespread application.Fortunately,near-infrared(NIR)fluorescence and surface-enhanced Raman scattering(SERS)techniques have been recently highlighted in plants.NIR fluorescence imaging holds the advantages of being non-invasive,high-resolution and real-time,which is suitable for rapid screening in large-scale scenarios.While SERS enables highly sensitive and specific detection of trace chemical substances within plant tissues.Therefore,the complementarity of NIR fluorescence and SERS modalities can provide more comprehensive and accurate information for plant disease diagnosis and growth status monitoring.This article summarizes these two modalities in plant applications,and discusses the advantages of multimodal NIR fluorescence/SERS for a better understanding of a plant’s response to stress,thereby improving the accuracy and sensitivity of detection.
基金supported by the National Natural Science Foundation of China(No.62241109)the Tianjin Science and Technology Commissioner Project(No.20YDTPJC01110)。
文摘An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.
基金funded by the Undergraduate Higher Education Teaching and Research Project(No.FBJY20230216)Research Projects of Putian University(No.2023043)the Education Department of the Fujian Province Project(No.JAT220300).
文摘In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a serious threat to patients’lives and health.A colonoscopy is an important means of detecting colon polyps.However,in polyp imaging,due to the large differences and diverse types of polyps in size,shape,color,etc.,traditional detection methods face the problem of high false positive rates,which creates problems for doctors during the diagnosis process.In order to improve the accuracy and efficiency of colon polyp detection,this question proposes a network model suitable for colon polyp detection(PD-YOLO).This method introduces the self-attention mechanism CBAM(Convolutional Block Attention Module)in the backbone layer based on YOLOv7,allowing themodel to adaptively focus on key information and ignore the unimportant parts.To help themodel do a better job of polyp localization and bounding box regression,add the SPD-Conv(Symmetric Positive Definite Convolution)module to the neck layer and use deconvolution instead of upsampling.Theexperimental results indicate that the PD-YOLO algorithm demonstrates strong robustness in colon polyp detection.Compared to the original YOLOv7,on the Kvasir-SEG dataset,PD-YOLO has shown an increase of 5.44 percentage points in AP@0.5,showcasing significant advantages over other mainstream methods.