期刊文献+
共找到43,620篇文章
< 1 2 250 >
每页显示 20 50 100
基于Reason模型的医学院校实验室安全风险防控 被引量:1
1
作者 王雪 台红祥 +1 位作者 王华 李军 《化工管理》 2025年第26期94-97,共4页
有些医学院校实验室存在诸多安全风险,关乎师生生命健康及学校正常教学科研秩序。文章引入Reason模型,深入剖析医学院校实验室安全风险防控问题,从组织因素、不安全的监督、不安全行为的前提条件及不安全行为四个层面识别风险因素,并提... 有些医学院校实验室存在诸多安全风险,关乎师生生命健康及学校正常教学科研秩序。文章引入Reason模型,深入剖析医学院校实验室安全风险防控问题,从组织因素、不安全的监督、不安全行为的前提条件及不安全行为四个层面识别风险因素,并提出针对性防控策略,旨在提升医学院校实验室安全管理水平,降低安全事故发生概率。 展开更多
关键词 reason模型 医学院校 实验室安全 风险防控
在线阅读 下载PDF
Reason Serving Faith:The Passion and Resurrection of Jesus Christ
2
作者 PU Rongjian 《Cultural and Religious Studies》 2025年第8期453-464,共12页
In Christianity,the passion and resurrection of Jesus Christ are a fact of history.If his resurrection is a miracle to be accepted by faith,no rational demonstration of it is needed,although the Apostle Paul argues by... In Christianity,the passion and resurrection of Jesus Christ are a fact of history.If his resurrection is a miracle to be accepted by faith,no rational demonstration of it is needed,although the Apostle Paul argues by analogy for the resurrection in 1 Corinthians.Being a realist and using Latin,Aquinas holds that human reason can contribute to an understanding of faith;he has no strict distinction between hades and hell.He uses logos to emphasize reason and instrumental causality in explaining the relationship between humanity and divinity for Jesus.Arguing for the resurrection of Jesus,Aquinas should be consistent with his principle of the individualization of a soul through a body,and a separate soul being a substance,but he is inconsistent.Considering Jesus’soul before his resurrection,Aquinas supports the Apostles’Creed,but he develops the notion of purgatory,where departed souls sojourn temporarily.This paper argues that Aquinas,in discussing the passion and resurrection of Jesus Christ,obscures the distinction he draws between faith and reason. 展开更多
关键词 reason FAITH the passion RESURRECTION
在线阅读 下载PDF
Visible-Infrared Person Re-Identification via Quadratic Graph Matching and Block Reasoning
3
作者 Junfeng Lin Jialin Ma +3 位作者 Wei Chen Hao Wang Weiguo Ding Mingyao Tang 《Computers, Materials & Continua》 2025年第7期1013-1029,共17页
The cross-modal person re-identification task aims to match visible and infrared images of the same individual.The main challenges in this field arise from significant modality differences between individuals and the ... The cross-modal person re-identification task aims to match visible and infrared images of the same individual.The main challenges in this field arise from significant modality differences between individuals and the lack of high-quality cross-modal correspondence methods.Existing approaches often attempt to establish modality correspondence by extracting shared features across different modalities.However,these methods tend to focus on local information extraction and fail to fully leverage the global identity information in the cross-modal features,resulting in limited correspondence accuracy and suboptimal matching performance.To address this issue,we propose a quadratic graph matching method designed to overcome the challenges posed by modality differences through precise cross-modal relationship alignment.This method transforms the cross-modal correspondence problem into a graph matching task and minimizes the matching cost using a center search mechanism.Building on this approach,we further design a block reasoning module to uncover latent relationships between person identities and optimize the modality correspondence results.The block strategy not only improves the efficiency of updating gallery images but also enhances matching accuracy while reducing computational load.Experimental results demonstrate that our proposed method outperforms the state-of-the-art methods on the SYSU-MM01,RegDB,and RGBNT201 datasets,achieving excellent matching accuracy and robustness,thereby validating its effectiveness in cross-modal person re-identification. 展开更多
关键词 Cross-modal person re-identification modal correspondence quadratic graph matching block reasoning
在线阅读 下载PDF
A Novel Evidential Reasoning Rule with Causal Relationships between Evidence
4
作者 Shanshan Liu Liang Chang +1 位作者 Guanyu Hu Shiyu Li 《Computers, Materials & Continua》 2025年第10期1113-1134,共22页
The evidential reasoning(ER)rule framework has been widely applied in multi-attribute decision analysis and system assessment to manage uncertainty.However,traditional ER implementations rely on two critical limitatio... The evidential reasoning(ER)rule framework has been widely applied in multi-attribute decision analysis and system assessment to manage uncertainty.However,traditional ER implementations rely on two critical limitations:1)unrealistic assumptions of complete evidence independence,and 2)a lack of mechanisms to differentiate causal relationships from spurious correlations.Existing similarity-based approaches often misinterpret interdependent evidence,leading to unreliable decision outcomes.To address these gaps,this study proposes a causality-enhanced ER rule(CER-e)framework with three key methodological innovations:1)a multidimensional causal representation of evidence to capture dependency structures;2)probabilistic quantification of causal strength using transfer entropy,a model-free information-theoretic measure;3)systematic integration of causal parameters into the ER inference process while maintaining evidential objectivity.The PC algorithm is employed during causal discovery to eliminate spurious correlations,ensuring robust causal inference.Case studies in two types of domains—telecommunications network security assessment and structural risk evaluation—validate CER-e’s effectiveness in real-world scenarios.Under simulated incomplete information conditions,the framework demonstrates superior algorithmic robustness compared to traditional ER.Comparative analyses show that CER-e significantly improves both the interpretability of causal relationships and the reliability of assessment results,establishing a novel paradigm for integrating causal inference with evidential reasoning in complex system evaluation. 展开更多
关键词 Evidential reasoning Rule UNCERTAINTY causal strength causal relationship transfer entropy complex system evaluation
在线阅读 下载PDF
COVID-19 emergency decision-making using q-rung linear diophantine fuzzy set,differential evolutionary and evidential reasoning techniques
5
作者 G Punnam Chander Sujit Das 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期182-206,共25页
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r... In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments. 展开更多
关键词 COVID-19 q-rung linear diophantine fuzzy set differential evolutionary evidential reasoning DECISION-MAKING
暂未订购
Functional evidential reasoning model(FERM)-A new systematic approach for exploring hazardous chemical operational accidents under uncertainty
6
作者 Qianlin Wang Jiaqi Han +6 位作者 Lei Cheng Feng Wang Yiming Chen Zhan Dou Bing Zhang Feng Chen Guoan Yang 《Chinese Journal of Chemical Engineering》 2025年第5期255-269,共15页
This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal... This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective. 展开更多
关键词 Functional evidential reasoning model (FERM) Accident causation analysis Operational accidents Hazardous chemical UNCERTAINTY
在线阅读 下载PDF
Extrapolation Reasoning on Temporal Knowledge Graphs via Temporal Dependencies Learning
7
作者 Ye Wang Binxing Fang +3 位作者 Shuxian Huang Kai Chen Yan Jia Aiping Li 《CAAI Transactions on Intelligence Technology》 2025年第3期815-826,共12页
Extrapolation on Temporal Knowledge Graphs(TKGs)aims to predict future knowledge from a set of historical Knowledge Graphs in chronological order.The temporally adjacent facts in TKGs naturally form event sequences,ca... Extrapolation on Temporal Knowledge Graphs(TKGs)aims to predict future knowledge from a set of historical Knowledge Graphs in chronological order.The temporally adjacent facts in TKGs naturally form event sequences,called event evolution patterns,implying informative temporal dependencies between events.Recently,many extrapolation works on TKGs have been devoted to modelling these evolutional patterns,but the task is still far from resolved because most existing works simply rely on encoding these patterns into entity representations while overlooking the significant information implied by relations of evolutional patterns.However,the authors realise that the temporal dependencies inherent in the relations of these event evolution patterns may guide the follow-up event prediction to some extent.To this end,a Temporal Relational Context-based Temporal Dependencies Learning Network(TRenD)is proposed to explore the temporal context of relations for more comprehensive learning of event evolution patterns,especially those temporal dependencies caused by interactive patterns of relations.Trend incorporates a semantic context unit to capture semantic correlations between relations,and a structural context unit to learn the interaction pattern of relations.By learning the temporal contexts of relations semantically and structurally,the authors gain insights into the underlying event evolution patterns,enabling to extract comprehensive historical information for future prediction better.Experimental results on benchmark datasets demonstrate the superiority of the model. 展开更多
关键词 EXTRAPOLATION link prediction temporal knowledge graph reasoning
在线阅读 下载PDF
Parental cognitive ability effects on children’s logical reasoning ability:The mediating role of academic expectation and the family environment
8
作者 Qing Wang Haiyan Xu Xuhuan Wang 《Journal of Psychology in Africa》 2025年第4期497-503,共7页
This study investigated the relationship between parental cognitive ability and child logical reasoning ability,and the role of academic expectation and family environment in that relationship.Based on the 2020 China ... This study investigated the relationship between parental cognitive ability and child logical reasoning ability,and the role of academic expectation and family environment in that relationship.Based on the 2020 China Family Panel Studies(CFPS)data,1491 children(girls ratio=53.78%;average grade=6.023 years,school grade standard deviation=1.825 years).Results following multiple regression model(OLS)show that the higher the parental cognitive ability,the higher the children’s logical reasoning ability.Secondly,parental academic expectation serves as a mediator between their cognitive ability and children’s logical reasoning ability for higher logical reasoning by children.Third,a possible family environment acts as a mediator in the relationship between parents’cognitive ability and children’s logical reasoning ability to be higher.We conclude from thesefindings that parents with high cognitive abilities can enhance their children’s logical reasoning skills not only by setting higher academic expectations,but also by cultivating a supportive family environment.Thesefindings imply a need for intervention to improve family quality of life to enhance children’s thinking abilities to optimize their academic learning. 展开更多
关键词 parental cognitive ability children’s logical reasoning ability academic expectation family environment intermediary role
在线阅读 下载PDF
Controllable Subsidence and Reasonable Planning May Mitigate Geo-Hazards in Large-Scale Land Creation Area
9
作者 Haijun Qiu Yingdong Wei Wen Liu 《Journal of Earth Science》 2025年第2期806-811,共6页
0 INTRODUCTION Due to the rapid population growth and the accelerated urbanization process,the contradiction between the demand for expanding ground space and the limited available land scale is becoming increasingly ... 0 INTRODUCTION Due to the rapid population growth and the accelerated urbanization process,the contradiction between the demand for expanding ground space and the limited available land scale is becoming increasingly prominent.China has implemented and completed several largescale land infilling and excavation projects(Figure 1),which have become the main way to increase land resources and expand construction land. 展开更多
关键词 expand construction land increase land resources geo hazards largescale land infilling excavation projects figure reasonable planning large scale land creation area expanding ground space controllable subsidence
原文传递
基于Reason模型的SIF-Q260型电子小肠镜故障原因分析 被引量:1
10
作者 翁飞 李相林 +1 位作者 程时栋 潘振宇 《中国医学装备》 2024年第2期189-192,共4页
根据武汉大学中南医院内窥镜中心SIF-Q260型小肠镜故障率高且维修成本高的情况,应用Reason模型,从环境影响、不安全监督、不安全行为前兆及不安全行为4个层面分析造成SIF-Q260小肠镜故障的原因,针对各个层面故障原因,从定期培训以规范... 根据武汉大学中南医院内窥镜中心SIF-Q260型小肠镜故障率高且维修成本高的情况,应用Reason模型,从环境影响、不安全监督、不安全行为前兆及不安全行为4个层面分析造成SIF-Q260小肠镜故障的原因,针对各个层面故障原因,从定期培训以规范内窥镜的洗消及使用、设置专人管理内窥镜并定期对内窥镜使用洗消的规范性进行监督及评价、完善内窥镜监管系统3方面拟定改进措施,堵住系统“漏洞”,为内窥镜质量控制措施的制定提供依据,可预防和减少内窥镜故障的发生。 展开更多
关键词 电子内窥镜 reason模型 故障 原因分析 质量控制
暂未订购
基于Reason模型的ICU护士身体约束护理工作体验的质性研究 被引量:1
11
作者 郭祖涛 尉喜燕 +3 位作者 张蔚 裴浩婷 李龙鑫 周敏 《齐鲁护理杂志》 2024年第24期43-46,共4页
目的:探究ICU身体约束护理工作中存在的问题,为制订ICU身体约束管理方案提供依据。方法:在Reason模型的基础上采用描述性质性研究,于2024年4月1日~6月1日使用目的抽样选取医院的10名ICU护士进行半结构式访谈,采用定向内容分析法分析资... 目的:探究ICU身体约束护理工作中存在的问题,为制订ICU身体约束管理方案提供依据。方法:在Reason模型的基础上采用描述性质性研究,于2024年4月1日~6月1日使用目的抽样选取医院的10名ICU护士进行半结构式访谈,采用定向内容分析法分析资料。结果:归纳得出4个主题、13个亚主题。分别为:组织影响(身体约束相关培训不足、医护人员间存在意见分歧、医护人员间缺少沟通、工作系统有待改善)、不安全的监督(工作流程不够规范、动态评估不到位)、不安全行为的前兆(身体约束护理知识欠缺、未使用评估工具、约束使用频率较高、对于替代措施的态度偏差)、不安全操作行为(身体约束护理需要改进、心理护理不到位、较少关注家属)。结论:护理管理者应建立支持身体约束规范护理的流程和制度,在知信行三方面对ICU护士进行培训,增强护士专业素养,定期进行质量督查,促进质量改进。 展开更多
关键词 身体约束 重症监护病房 reason模型 质性研究
暂未订购
Air target intention recognition and causal effect analysis combining uncertainty information reasoning and potential outcome framework 被引量:7
12
作者 Yu ZHANG Fanghui HUANG +2 位作者 Xinyang DENG Mingda LI Wen JIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期287-299,共13页
Recognizing target intent is crucial for making decisions on the battlefield.However,the imperfect and ambiguous character of battlefield situations challenges the validity and causation analysis of classical intent r... Recognizing target intent is crucial for making decisions on the battlefield.However,the imperfect and ambiguous character of battlefield situations challenges the validity and causation analysis of classical intent recognition techniques.Facing with the challenge,a target intention causal analysis paradigm is proposed by combining with an Intervention Retrieval(IR)model and a Hybrid Intention Recognition(HIR)model.The target data acquired by the sensors are modelled as Basic Probability Assignments(BPAs)based on evidence theory to create uncertain datasets.Then,the HIR model is utilized to recognize intent for a tested sample from uncertain datasets.Finally,the intervention operator under the evidence structure is utilized to perform attribute intervention on the tested sample.Data retrieval is performed in the sample database based on the IR model to generate the intention distribution of the pseudo-intervention samples to analyze the causal effects of individual sample attributes.The simulation results demonstrate that our framework successfully identifies the target intention under the evidence structure and goes further to analyze the causal impact of sample attributes on the target intention. 展开更多
关键词 Causal effect analysis Hybrid intention recognition Intervention retrieval Target intention Uncertainty reasoning
原文传递
Deterioration Reason and Improvement Measure of the Retarding Effect of Protein Retarder on Phosphorus Building Gypsum 被引量:1
13
作者 刘志刚 TANG Zezheng +3 位作者 杨立荣 WANG Chunmei XIE Yuantao LIU Yisen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期962-967,共6页
The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the settin... The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the setting time and displays a better retarding effect,but for PBG shows a poor retarding effect.Furthermore,the deterioration reason of the retarding effect of protein retarder on PBG was investigated by measuring the pH value and the retarder concentration of the liquid phase from vacuum filtration of PBG slurry at different hydration time,and the measure to improve the retarding effect of protein retarding on PBG was suggested.The pH value of PBG slurry(<5.0)is lower than that of DBG slurry(7.8-8.5).After hydration for 5 min,the concentration of retarder in liquid phase of DBG slurry gradually decreases,but in liquid phase of PBG slurry continually increases,which results in the worse retarding effect of protein retarder on PBG.The liquid phase pH value of PBG slurry can be adjusted higher by sodium silicate,which is beneficial to improvement in the retarding effect of the retarder.By adding 1.0%of sodium silicate,the initial setting time of PBG was efficiently prolonged from 17 to 210 min,but little effect on the absolute dry flexural strength was observed. 展开更多
关键词 protein retarder phosphorus building gypsum deterioration reason improvement measure
原文传递
基于改进Reason模型的航空事故人为维修差错解析与预防 被引量:1
14
作者 郑嘉韬 丁溢周 《科技风》 2024年第17期145-148,共4页
当今航空工业发展迅猛,航空器制造管理技术日趋成熟,重大航空事故发生率逐年下降,但维修差错相关事故占比却不降反升。本文首先利用数组数据,证明了因维修差错造成的事故在航空事故中的占比在逐渐提高。其次利用Reason模型提出了一种归... 当今航空工业发展迅猛,航空器制造管理技术日趋成熟,重大航空事故发生率逐年下降,但维修差错相关事故占比却不降反升。本文首先利用数组数据,证明了因维修差错造成的事故在航空事故中的占比在逐渐提高。其次利用Reason模型提出了一种归纳方法,利用历史航空事故数据进行分析,通过讨论各类维修差错致因在航空事故Reason模型中的占比,给出减少维修差错的建议。 展开更多
关键词 reason模型 瑞士奶酪模型 航空事故 人为差错
在线阅读 下载PDF
A GMDA clustering algorithm based on evidential reasoning architecture
15
作者 Haibin WANG Xin GUAN +2 位作者 Xiao YI Shuangming LI Guidong SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期300-311,共12页
The traditional clustering algorithm is difficult to deal with the identification and division of uncertain objects distributed in the overlapping region,and aimed at solving this problem,the Evidential Clustering bas... The traditional clustering algorithm is difficult to deal with the identification and division of uncertain objects distributed in the overlapping region,and aimed at solving this problem,the Evidential Clustering based on General Mixture Decomposition Algorithm(GMDA-EC)is proposed.First,the belief classification of target cluster is carried out,and the sample category of target distribution overlapping region is extended.Then,on the basis of General Mixture Decomposition Algorithm(GMDA)clustering,the fusion model of evidence credibility and evidence relative entropy is constructed to generate the basic probability assignment of the target and achieve the belief division of the target.Finally,the performance of the algorithm is verified by the synthetic dataset and the measured dataset.The experimental results show that the algorithm can reflect the uncertainty of target clustering results more comprehensively than the traditional probabilistic partition clustering algorithm. 展开更多
关键词 Evidential clustering Credal partition Evidential reasoning Mixed decomposition Gaussian mixture model
原文传递
Knowledge Reasoning Method Based on Deep Transfer Reinforcement Learning:DTRLpath
16
作者 Shiming Lin Ling Ye +4 位作者 Yijie Zhuang Lingyun Lu Shaoqiu Zheng Chenxi Huang Ng Yin Kwee 《Computers, Materials & Continua》 SCIE EI 2024年第7期299-317,共19页
In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring mi... In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks. 展开更多
关键词 Intelligent agent knowledge graph reasoning REINFORCEMENT transfer learning
在线阅读 下载PDF
GATiT:An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning
17
作者 Yu Song Pengcheng Wu +2 位作者 Dongming Dai Mingyu Gui Kunli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4767-4790,共24页
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me... The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods. 展开更多
关键词 Intelligent diagnosis knowledge graph graph attention network knowledge reasoning
在线阅读 下载PDF
IndRT-GCNets: Knowledge Reasoning with Independent Recurrent Temporal Graph Convolutional Representations
18
作者 Yajing Ma Gulila Altenbek Yingxia Yu 《Computers, Materials & Continua》 SCIE EI 2024年第1期695-712,共18页
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr... Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness. 展开更多
关键词 Knowledge reasoning entity and relation representation structural dependency relationship evolutionary representation temporal graph convolution
在线阅读 下载PDF
The Effect of the Menstrual Cycle on Cognitive Performance: Spatial Reasoning, Visual & Numerical Memory
19
作者 Anusha Asim Rifah Maryam +4 位作者 Zahra Sultan Areej Shahid Fatima Yousaf Ishika Khandelwal Isra Allana 《Journal of Behavioral and Brain Science》 2024年第10期276-296,共21页
The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these be... The menstrual cycle has been a topic of interest in relation to behavior and cognition for many years, with historical beliefs associating it with cognitive impairment. However, recent research has challenged these beliefs and suggested potential positive effects of the menstrual cycle on cognitive performance. Despite these emerging findings, there is still a lack of consensus regarding the impact of the menstrual cycle on cognition, particularly in domains such as spatial reasoning, visual memory, and numerical memory. Hence, this study aimed to explore the relationship between the menstrual cycle and cognitive performance in these specific domains. Previous studies have reported mixed findings, with some suggesting no significant association and others indicating potential differences across the menstrual cycle. To contribute to this body of knowledge, we explored the research question of whether the menstrual cycles have a significant effect on cognition, particularly in the domains of spatial reasoning, visual and numerical memory in a regionally diverse sample of menstruating females. A total of 30 menstruating females from mixed geographical backgrounds participated in the study, and a repeated measures design was used to assess their cognitive performance in two phases of the menstrual cycle: follicular and luteal. The results of the study revealed that while spatial reasoning was not significantly related to the menstrual cycle (p = 0.256), both visual and numerical memory had significant positive associations (p < 0.001) with the luteal phase. However, since the effect sizes were very small, the importance of this relationship might be commonly overestimated. Future studies could thus entail designs with larger sample sizes, including neuro-biological measures of menstrual stages, and consequently inform competent interventions and support systems. 展开更多
关键词 Menstrual Health Menstrual Cycle MENSTRUATION Mental Health COGNITION Spatial reasoning Visual Memory Numerical Memory
在线阅读 下载PDF
Challenges Experienced by Nurse Educators in Promoting Acquisition of Clinical Reasoning Skills by the Undergraduate Nursing Students: A Qualitative Exploratory Study
20
作者 Omero. G. Mwale Mukwato-Katowa Patricia Marjorie Kabinga-Makukula 《Open Journal of Nursing》 2024年第8期459-476,共18页
Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is... Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively. 展开更多
关键词 ACQUISITION Clinical reasoning Skills Undergraduate Nursing Student Nurse Educator
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部