Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
Phantom limb pain(PLP)is not only a physical pain experience but also poses a significant challenge to mental health and quality of life.Currently,the mechanism of PLP treatment is still unclear,and there are many met...Phantom limb pain(PLP)is not only a physical pain experience but also poses a significant challenge to mental health and quality of life.Currently,the mechanism of PLP treatment is still unclear,and there are many methods with varying effects.This article starts with the application research of extended reality technology in PLP treatment,through describing the application of its branch technologies(virtual reality,augmented reality,and mixed reality technology),to lay the foundation for subsequent research,in the hope of finding advanced and effective treatment methods,and providing a basis for future product transformation.展开更多
Objectives:To explore the efficacy and safety of virtual reality(VR)in relieving negative emotions in patients with breast cancer with different personalities.Methods:A randomized controlled trial was conducted.Betwee...Objectives:To explore the efficacy and safety of virtual reality(VR)in relieving negative emotions in patients with breast cancer with different personalities.Methods:A randomized controlled trial was conducted.Between April 2023 and October 2023,we enrolled patients with breast cancer treated in the Department of Breast Cancer and Oncology at Sun Yat-Sen Memorial Hospital,Sun Yat-Sen University,Guangdong Province.The patients were randomly divided into an intervention group(n=118)and a control group(n=119)using block randomization.The intervention group received the VR intervention 3-5 times over 5±2 weeks using natural landscapes with music or relaxation guidance,and the duration of each VR intervention was 15±3 min.The control group received routine nursing care,including disease education and psychological counseling.Patients were assessed using the Type D Scale,Positive and Negative Affect Scale,and Distress Thermometer,and adverse events during the intervention were recorded.Results:Overall,85 patients completed the study(44 in the intervention group and 41 in the control group).Patients with Type D personalities showed more negative emotions[25.0(21.5,27.5)vs.19.0(16.0,24.0),P=0.001]and distressed attitudes[4.0(2.0,5.0)vs.3.0(1.0,4.0),P=0.020]with fewer positive emotions(27.2±5.6 vs.31.0±5.9,P=0.014)than those with non-Type D personalities.Total population analysis revealed no significant differences between the groups.However,in the subgroup analysis,patients with Type D personalities in the intervention group showed greater relief from negative emotions than those in the control group[median difference,-5.0(-9.0,-2.5)vs.-2.0(-4.0,2.0),P=0.046].No significant differences were found between groups of patients with non-Type D personality traits.The proportion of adverse events was not significantly different between groups(P=0.110).Conclusions:Breast cancer patients with Type D personalities suffer more severe negative emotions and distress,and more attention should be paid to them.VR intervention significantly and safely reduced negative emotions in patients with Type D personalities.展开更多
Mixed Reality(MR)Head Mounted Displays(HMDs)offer a hitherto underutilized set of advantages compared to conventional 3D scanners.These benefits,inherent to MR-HMDs albeit not originally intended for such appli-cation...Mixed Reality(MR)Head Mounted Displays(HMDs)offer a hitherto underutilized set of advantages compared to conventional 3D scanners.These benefits,inherent to MR-HMDs albeit not originally intended for such appli-cations,encompass the freedom of hand movement,hand tracking capabilities,and real-time mesh visualization.This study leverages these attributes to enhance indoor scanning process.The primary innovation lies in the con-ceptualization of manual-positioned MR virtual seeds for the purpose of indoor point cloud segmentation via a region-growing approach.The proposed methodology is effectively implemented using the HoloLens 2 platform.An application is designed to enable the remote placement of virtual tags based on the user’s visual focus on the MR-HMD display.This non-intrusive interface is further enriched with expedited tag saving and deletion functionalities,as well as augmented tag visualization through overlaying them on real-world objects.To assess the practicality of the proposed method,a comprehensive real-world case study spanning an area of 330 s^(2) is conducted.Remarkably,the survey demonstrates remarkable efficiency,with 20 virtual tags swiftly deployed,each requiring a mere 2 s for precise positioning.Subsequently,these virtual tags are employed as seeds in a region-growing algorithm for point cloud segmentation.The accuracy of virtual tag positioning is found to be exceptional,with an average error of 2.4±1.8 cm.Importantly,the user experience is significantly enhanced,leading to improved seed positioning and,consequently,more accurate final segmentation results.展开更多
The use of virtual reality to educate preoperative patients has a positive impact on nurses as well as patients undergoing treatment.It can help improve patient satisfaction and improve favorable outcomes by reducing ...The use of virtual reality to educate preoperative patients has a positive impact on nurses as well as patients undergoing treatment.It can help improve patient satisfaction and improve favorable outcomes by reducing patient anxiety and proving adequate knowledge about the procedure and possible outcomes to the patient.It also reduces burden on nursing staff and counsellors.Larger and more diverse cohort studies will help us understand the wider application of this tool on the patient population.It may be difficult to apply this tool on elderly patients with failing eyesight,multiple physical comorbidities.Also,there may be reduced acceptance of this modality by older nursing staff and practitioners who may prefer the traditional verbal version for counselling.We will benefit from a combined approach of using virtual reality apps with tradition one-on-one counselling to help alleviate patient concerns and improve patient and healthcare professional satisfaction.展开更多
Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in ed...Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.展开更多
The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achievi...The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks.展开更多
With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud...With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.展开更多
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network traffic.Cloud environments pose significant challenges in maintaining privacy and security.Global approach...The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network traffic.Cloud environments pose significant challenges in maintaining privacy and security.Global approaches,such as IDS,have been developed to tackle these issues.However,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional data.In fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within it.The traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of features.The selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)module.In this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious traffic.The classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable decisions.With the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive measures.Extensive experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different types.Theproposedmodel outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%F1-score.Such results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.展开更多
With technological advancements,virtual reality(VR),once limited to high-end professional applications,is rapidly expanding into entertainment and broader consumer domains.However,the inherent contradiction between mo...With technological advancements,virtual reality(VR),once limited to high-end professional applications,is rapidly expanding into entertainment and broader consumer domains.However,the inherent contradiction between mobile hardware computing power and the demand for high-resolution,high-refresh-rate rendering has intensified,leading to critical bottlenecks,including frame latency and power overload,which constrain large-scale applications of VR systems.This study systematically analyzes four key technologies for efficient VR rendering:(1)foveated rendering,which dynamically reduces rendering precision in peripheral regions based on the physiological characteristics of the human visual system(HVS),thereby significantly decreasing graphics computation load;(2)stereo rendering,optimized through consistent stereo rendering acceleration algorithms;(3)cloud rendering,utilizing object-based decomposition and illumination-based decomposition for distributed resource scheduling;and(4)low-power rendering,integrating parameter-optimized rendering,super-resolution technology,and frame-generation technology to enhance mobile energy efficiency.Through a systematic review of the core principles and optimization approaches of these technologies,this study establishes research benchmarks for developing efficient VR systems that achieve high fidelity and low latency while providing further theoretical support for the engineering implementation and industrial advancement of VR rendering technologies.展开更多
Purpose: This study aimed to investigate the immediate effects of optokinetic stimulation (OKS) using virtual reality (VR) on visual dependency and sensory reweighting in postural control during static standing. Speci...Purpose: This study aimed to investigate the immediate effects of optokinetic stimulation (OKS) using virtual reality (VR) on visual dependency and sensory reweighting in postural control during static standing. Specifically, it examined whether VR-based OKS could reduce visual dependency more effectively than visual deprivation through eye closure. Methods: Ten healthy adults participated in this study. A balance function meter was used to measure postural stability, including Romberg ratios before and after two conditions: VR-based OKS (VR + OKS) and eye closure (EC). Participants performed a two-minute standing task under each condition in random order, with adequate rest between tasks. In the VR + OKS condition, a smartphone-based VR headset presented a rotational OKS, while in the EC condition, participants stood with their eyes closed. Statistical analyses were conducted using paired t-tests to compare pre- and post-task Romberg ratios. Results: No significant differences were observed in the pre-task Romberg ratios between conditions. After the VR + OKS condition, significant reductions in Romberg A and Romberg V were observed. In contrast, no significant changes were noted in Romberg ratios after the EC condition. Conclusion: VR-based OKS significantly reduced visual dependency, as indicated by decreased Romberg ratios, suggesting its potential to facilitate sensory reweighting during postural control. These findings highlight the utility of low-cost VR devices in balance rehabilitation for conditions involving high visual dependency. Future studies should expand on this preliminary research by including larger sample sizes and diverse populations to confirm its clinical applicability.展开更多
Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various doma...Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tas...The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times.展开更多
Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in we...Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in weather forecasting and climate prediction models.Hence,the latest activation and triple-moment condensation schemes were combined to simulate and analyze the evolution characteristics of a cloud droplet spectrum from activation to condensation and compared with a high-resolution Lagrangian bin model and the current double-moment condensation schemes,in which the spectral shape parameter is fixed or diagnosed by an empirical formula.The results demonstrate that the latest schemes effectively capture the evolution characteristics of the cloud droplet spectrum during activation and condensation,which is in line with the performance of the bin model.The simulation of the latest activation and condensation schemes in a parcel model shows that the cloud droplet spectrum gradually widens and exhibits a multimodal distribution during the activation process,accompanied by a decrease in the spectral shape and slope parameters over time.Conversely,during the condensation process,the cloud droplet spectrum gradually narrows,resulting in increases in the spectral shape and slope parameters.However,these double-moment schemes fail to accurately replicate the evolution of the cloud droplet spectrum and its multimodal distribution characteristics.Furthermore,the latest schemes were coupled into a 1.5D cumulus model,and an observation case was simulated.The simulations confirm that the cloud droplet spectrum appears wider at the supersaturated cloud base and cloud top due to activation,while it becomes narrower at the middle altitudes of the cloud due to condensation growth.展开更多
The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface t...The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface type,cloud type,cloud phase,and aerosol type.To explore the impact of different underlying surfaces on the effect of aerosols on cloud development,this study focused on the Yangtze River Delta(YRD)and its offshore regions(YRD sea)for a comparative analysis based on multi-source satellite data,while also considering the variations in cloud type and cloud phase.The results show lower cloud-top height and depth of single-layer clouds over the ocean than land,and higher liquid cloud in spring over the ocean.Aerosols are found to enhance the cumulus cloud depth through microphysical effects,which is particularly evident over the ocean.Aerosols are also found to decrease the cloud droplet effective radius in the ocean region and during the mature stage of cloud development in the land region,while opposite results are found during the early stage of cloud development in the land region.The quantitative results indicate that the indirect effect is positive(0.05)in the land region at relatively high cloud water path,which is smaller than that in the ocean region(0.11).The findings deepen our understanding of the influence aerosols on cloud development and the mechanisms involved,which could then be applied to improve the ability to simulate cloud-associated weather processes.展开更多
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
文摘Phantom limb pain(PLP)is not only a physical pain experience but also poses a significant challenge to mental health and quality of life.Currently,the mechanism of PLP treatment is still unclear,and there are many methods with varying effects.This article starts with the application research of extended reality technology in PLP treatment,through describing the application of its branch technologies(virtual reality,augmented reality,and mixed reality technology),to lay the foundation for subsequent research,in the hope of finding advanced and effective treatment methods,and providing a basis for future product transformation.
基金supported by a project of the National Natural Science Foundation of China:Research on the integration of artificial intelligence and virtual reality technology to promote psychological rehabilitation of breast cancer patients with different personalities(project approval no.82073408).
文摘Objectives:To explore the efficacy and safety of virtual reality(VR)in relieving negative emotions in patients with breast cancer with different personalities.Methods:A randomized controlled trial was conducted.Between April 2023 and October 2023,we enrolled patients with breast cancer treated in the Department of Breast Cancer and Oncology at Sun Yat-Sen Memorial Hospital,Sun Yat-Sen University,Guangdong Province.The patients were randomly divided into an intervention group(n=118)and a control group(n=119)using block randomization.The intervention group received the VR intervention 3-5 times over 5±2 weeks using natural landscapes with music or relaxation guidance,and the duration of each VR intervention was 15±3 min.The control group received routine nursing care,including disease education and psychological counseling.Patients were assessed using the Type D Scale,Positive and Negative Affect Scale,and Distress Thermometer,and adverse events during the intervention were recorded.Results:Overall,85 patients completed the study(44 in the intervention group and 41 in the control group).Patients with Type D personalities showed more negative emotions[25.0(21.5,27.5)vs.19.0(16.0,24.0),P=0.001]and distressed attitudes[4.0(2.0,5.0)vs.3.0(1.0,4.0),P=0.020]with fewer positive emotions(27.2±5.6 vs.31.0±5.9,P=0.014)than those with non-Type D personalities.Total population analysis revealed no significant differences between the groups.However,in the subgroup analysis,patients with Type D personalities in the intervention group showed greater relief from negative emotions than those in the control group[median difference,-5.0(-9.0,-2.5)vs.-2.0(-4.0,2.0),P=0.046].No significant differences were found between groups of patients with non-Type D personality traits.The proportion of adverse events was not significantly different between groups(P=0.110).Conclusions:Breast cancer patients with Type D personalities suffer more severe negative emotions and distress,and more attention should be paid to them.VR intervention significantly and safely reduced negative emotions in patients with Type D personalities.
基金partially supported by RYC2022-038100-I and RYC2020-029193-I funded by MCIN/AEI/10.13039/501100011033 and FSE‘El FSE invierte en tu futuro’a result of the project PID2021-123475OA-I00,funded by MCIN/AEI/10.13039/501100011033/FEDER,UE."+1 种基金the framework of the SUM4Re project(Creating materials banks from digital urban mining),which has received funding from the Horizon Europe research and innovation program under grant agreement no.101129961Funded by the European Union.
文摘Mixed Reality(MR)Head Mounted Displays(HMDs)offer a hitherto underutilized set of advantages compared to conventional 3D scanners.These benefits,inherent to MR-HMDs albeit not originally intended for such appli-cations,encompass the freedom of hand movement,hand tracking capabilities,and real-time mesh visualization.This study leverages these attributes to enhance indoor scanning process.The primary innovation lies in the con-ceptualization of manual-positioned MR virtual seeds for the purpose of indoor point cloud segmentation via a region-growing approach.The proposed methodology is effectively implemented using the HoloLens 2 platform.An application is designed to enable the remote placement of virtual tags based on the user’s visual focus on the MR-HMD display.This non-intrusive interface is further enriched with expedited tag saving and deletion functionalities,as well as augmented tag visualization through overlaying them on real-world objects.To assess the practicality of the proposed method,a comprehensive real-world case study spanning an area of 330 s^(2) is conducted.Remarkably,the survey demonstrates remarkable efficiency,with 20 virtual tags swiftly deployed,each requiring a mere 2 s for precise positioning.Subsequently,these virtual tags are employed as seeds in a region-growing algorithm for point cloud segmentation.The accuracy of virtual tag positioning is found to be exceptional,with an average error of 2.4±1.8 cm.Importantly,the user experience is significantly enhanced,leading to improved seed positioning and,consequently,more accurate final segmentation results.
文摘The use of virtual reality to educate preoperative patients has a positive impact on nurses as well as patients undergoing treatment.It can help improve patient satisfaction and improve favorable outcomes by reducing patient anxiety and proving adequate knowledge about the procedure and possible outcomes to the patient.It also reduces burden on nursing staff and counsellors.Larger and more diverse cohort studies will help us understand the wider application of this tool on the patient population.It may be difficult to apply this tool on elderly patients with failing eyesight,multiple physical comorbidities.Also,there may be reduced acceptance of this modality by older nursing staff and practitioners who may prefer the traditional verbal version for counselling.We will benefit from a combined approach of using virtual reality apps with tradition one-on-one counselling to help alleviate patient concerns and improve patient and healthcare professional satisfaction.
文摘Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.
文摘The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks.
基金supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(RS-2024-00399401,Development of Quantum-Safe Infrastructure Migration and Quantum Security Verification Technologies).
文摘With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.
文摘The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network traffic.Cloud environments pose significant challenges in maintaining privacy and security.Global approaches,such as IDS,have been developed to tackle these issues.However,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional data.In fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within it.The traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of features.The selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)module.In this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious traffic.The classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable decisions.With the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive measures.Extensive experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different types.Theproposedmodel outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%F1-score.Such results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.
基金Supported by the National Key R&D Program of China under grant No.2022YFB3303203the National Natural Science Foundation of China under grant No.62272275.
文摘With technological advancements,virtual reality(VR),once limited to high-end professional applications,is rapidly expanding into entertainment and broader consumer domains.However,the inherent contradiction between mobile hardware computing power and the demand for high-resolution,high-refresh-rate rendering has intensified,leading to critical bottlenecks,including frame latency and power overload,which constrain large-scale applications of VR systems.This study systematically analyzes four key technologies for efficient VR rendering:(1)foveated rendering,which dynamically reduces rendering precision in peripheral regions based on the physiological characteristics of the human visual system(HVS),thereby significantly decreasing graphics computation load;(2)stereo rendering,optimized through consistent stereo rendering acceleration algorithms;(3)cloud rendering,utilizing object-based decomposition and illumination-based decomposition for distributed resource scheduling;and(4)low-power rendering,integrating parameter-optimized rendering,super-resolution technology,and frame-generation technology to enhance mobile energy efficiency.Through a systematic review of the core principles and optimization approaches of these technologies,this study establishes research benchmarks for developing efficient VR systems that achieve high fidelity and low latency while providing further theoretical support for the engineering implementation and industrial advancement of VR rendering technologies.
文摘Purpose: This study aimed to investigate the immediate effects of optokinetic stimulation (OKS) using virtual reality (VR) on visual dependency and sensory reweighting in postural control during static standing. Specifically, it examined whether VR-based OKS could reduce visual dependency more effectively than visual deprivation through eye closure. Methods: Ten healthy adults participated in this study. A balance function meter was used to measure postural stability, including Romberg ratios before and after two conditions: VR-based OKS (VR + OKS) and eye closure (EC). Participants performed a two-minute standing task under each condition in random order, with adequate rest between tasks. In the VR + OKS condition, a smartphone-based VR headset presented a rotational OKS, while in the EC condition, participants stood with their eyes closed. Statistical analyses were conducted using paired t-tests to compare pre- and post-task Romberg ratios. Results: No significant differences were observed in the pre-task Romberg ratios between conditions. After the VR + OKS condition, significant reductions in Romberg A and Romberg V were observed. In contrast, no significant changes were noted in Romberg ratios after the EC condition. Conclusion: VR-based OKS significantly reduced visual dependency, as indicated by decreased Romberg ratios, suggesting its potential to facilitate sensory reweighting during postural control. These findings highlight the utility of low-cost VR devices in balance rehabilitation for conditions involving high visual dependency. Future studies should expand on this preliminary research by including larger sample sizes and diverse populations to confirm its clinical applicability.
文摘Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
文摘The ease of accessing a virtually unlimited pool of resources makes Infrastructure as a Service (IaaS) clouds an ideal platform for running data-intensive workflow applications comprising hundreds of computational tasks. However, executing scientific workflows in IaaS cloud environments poses significant challenges due to conflicting objectives, such as minimizing execution time (makespan) and reducing resource utilization costs. This study responds to the increasing need for efficient and adaptable optimization solutions in dynamic and complex environments, which are critical for meeting the evolving demands of modern users and applications. This study presents an innovative multi-objective approach for scheduling scientific workflows in IaaS cloud environments. The proposed algorithm, MOS-MWMC, aims to minimize total execution time (makespan) and resource utilization costs by leveraging key features of virtual machine instances, such as a high number of cores and fast local SSD storage. By integrating realistic simulations based on the WRENCH framework, the method effectively dimensions the cloud infrastructure and optimizes resource usage. Experimental results highlight the superiority of MOS-MWMC compared to benchmark algorithms HEFT and Max-Min. The Pareto fronts obtained for the CyberShake, Epigenomics, and Montage workflows demonstrate closer proximity to the optimal front, confirming the algorithm’s ability to balance conflicting objectives. This study contributes to optimizing scientific workflows in complex environments by providing solutions tailored to specific user needs while minimizing costs and execution times.
基金supported by the National Natural Science Foundations of China(Grant Nos.42305163 and U22A20577)the Construction Project of Weather Modification Ability in Central China(Grant No.ZQC-H22256)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0760300)the Projects of the Earth System Numerical Simulation Facility(Grant Nos.2024-EL-PT-000707,2023-ELPT-000482,2023-EL-ZD-00026,and 2022-EL-PT-00083)the STS Program of the Inner Mongolia Meteorological Service,Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,and Institute of Atmospheric Physics,Chinese Academy of Sciences(Grant No.2021CG0047)。
文摘Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in weather forecasting and climate prediction models.Hence,the latest activation and triple-moment condensation schemes were combined to simulate and analyze the evolution characteristics of a cloud droplet spectrum from activation to condensation and compared with a high-resolution Lagrangian bin model and the current double-moment condensation schemes,in which the spectral shape parameter is fixed or diagnosed by an empirical formula.The results demonstrate that the latest schemes effectively capture the evolution characteristics of the cloud droplet spectrum during activation and condensation,which is in line with the performance of the bin model.The simulation of the latest activation and condensation schemes in a parcel model shows that the cloud droplet spectrum gradually widens and exhibits a multimodal distribution during the activation process,accompanied by a decrease in the spectral shape and slope parameters over time.Conversely,during the condensation process,the cloud droplet spectrum gradually narrows,resulting in increases in the spectral shape and slope parameters.However,these double-moment schemes fail to accurately replicate the evolution of the cloud droplet spectrum and its multimodal distribution characteristics.Furthermore,the latest schemes were coupled into a 1.5D cumulus model,and an observation case was simulated.The simulations confirm that the cloud droplet spectrum appears wider at the supersaturated cloud base and cloud top due to activation,while it becomes narrower at the middle altitudes of the cloud due to condensation growth.
基金supported by the National Natural Science Foundation of China(Grant No.42230601).
文摘The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface type,cloud type,cloud phase,and aerosol type.To explore the impact of different underlying surfaces on the effect of aerosols on cloud development,this study focused on the Yangtze River Delta(YRD)and its offshore regions(YRD sea)for a comparative analysis based on multi-source satellite data,while also considering the variations in cloud type and cloud phase.The results show lower cloud-top height and depth of single-layer clouds over the ocean than land,and higher liquid cloud in spring over the ocean.Aerosols are found to enhance the cumulus cloud depth through microphysical effects,which is particularly evident over the ocean.Aerosols are also found to decrease the cloud droplet effective radius in the ocean region and during the mature stage of cloud development in the land region,while opposite results are found during the early stage of cloud development in the land region.The quantitative results indicate that the indirect effect is positive(0.05)in the land region at relatively high cloud water path,which is smaller than that in the ocean region(0.11).The findings deepen our understanding of the influence aerosols on cloud development and the mechanisms involved,which could then be applied to improve the ability to simulate cloud-associated weather processes.