Although the image dehazing problem has received considerable attention over recent years,the existing models often prioritise performance at the expense of complexity,making them unsuitable for real-world application...Although the image dehazing problem has received considerable attention over recent years,the existing models often prioritise performance at the expense of complexity,making them unsuitable for real-world applications,which require algorithms to be deployed on resource constrained-devices.To address this challenge,we propose WaveLiteDehaze-Network(WLD-Net),an end-to-end dehazing model that delivers performance comparable to complex models while operating in real time and using significantly fewer parameters.This approach capitalises on the insight that haze predominantly affects low-frequency infor-mation.By exclusively processing the image in the frequency domain using discrete wavelet transform(DWT),we segregate the image into high and low frequencies and process them separately.This allows us to preserve high-frequency details and recover low-frequency components affected by haze,distinguishing our method from existing approaches that use spatial domain processing as the backbone,with DWT serving as an auxiliary component.DWT is applied at multiple levels for better in-formation retention while also accelerating computation by downsampling feature maps.Subsequently,a learning-based fusion mechanism reintegrates the processed frequencies to reconstruct the dehazed image.Experiments show that WLD-Net out-performs other low-parameter models on real-world hazy images and rivals much larger models,achieving the highest PSNR and SSIM scores on the O-Haze dataset.Qualitatively,the proposed method demonstrates its effectiveness in handling a diverse range of haze types,delivering visually pleasing results and robust performance,while also generalising well across different scenarios.With only 0.385 million parameters(more than 100 times smaller than comparable dehazing methods),WLD-Net processes 1024×1024 images in just 0.045 s,highlighting its applicability across various real-world scenarios.The code is available at https://github.com/AliMurtaza29/WLD-Net.展开更多
Psychological distress detection plays a critical role in modern healthcare,especially in ambient environments where continuous monitoring is essential for timely intervention.Advances in sensor technology and artific...Psychological distress detection plays a critical role in modern healthcare,especially in ambient environments where continuous monitoring is essential for timely intervention.Advances in sensor technology and artificial intelligence(AI)have enabled the development of systems capable of mental health monitoring using multimodal data.However,existing models often struggle with contextual adaptation and real-time decision-making in dynamic settings.This paper addresses these challenges by proposing TRANS-HEALTH,a hybrid framework that integrates transformer-based inference with Belief-Desire-Intention(BDI)reasoning for real-time psychological distress detection.The framework utilizes a multimodal dataset containing EEG,GSR,heart rate,and activity data to predict distress while adapting to individual contexts.The methodology combines deep learning for robust pattern recognition and symbolic BDI reasoning to enable adaptive decision-making.The novelty of the approach lies in its seamless integration of transformermodelswith BDI reasoning,providing both high accuracy and contextual relevance in real time.Performance metrics such as accuracy,precision,recall,and F1-score are employed to evaluate the system’s performance.The results show that TRANS-HEALTH outperforms existing models,achieving 96.1% accuracy with 4.78 ms latency and significantly reducing false alerts,with an enhanced ability to engage users,making it suitable for deployment in wearable and remote healthcare environments.展开更多
Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient...Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on oper- ating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are ob- tained by using operational reliability evaluation.展开更多
An effective approach is presented to extract welds from real-time radiographs, Firstly an algorithm based on an adaptive bidirectional threshold was proposed to segment the gradient image into ternary image, and then...An effective approach is presented to extract welds from real-time radiographs, Firstly an algorithm based on an adaptive bidirectional threshold was proposed to segment the gradient image into ternary image, and then the bidirectional accumulator Hough Transform was developed to extract weld edges from the ternary image. Different values of the coefficient proposed in the threshold algorithm were tested, and the proposed approach was applied to extract welds from real-time radiographic images of different types of welds with defects. Results show that the proposed method is adaptive and effective to extract welds from real-time radiographs of linear welds.展开更多
In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the ...In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the capacity of ViT to capture global features,it compromises the preservation of fine-grained local feature information.To address these challenges,we propose a spatial positional enhancement module and a wavelet transform enhancement module tailored for ViT models.These modules aim to reduce spatial positional information loss during the patch embedding process and enhance the model’s feature extraction capabilities.The spatial positional enhancement module reinforces spatial information in sequential data through convolutional operations and multi-scale feature extraction.Meanwhile,the wavelet transform enhancement module utilizes the multi-scale analysis and frequency decomposition to improve the ViT’s understanding of global and local image structures.This enhancement also improves the ViT’s ability to process complex structures and intricate image details.Experiments on CIFAR-10,CIFAR-100 and ImageNet-1k datasets are done to compare the proposed method with advanced classification methods.The results show that the proposed model achieves a higher classification accuracy,confirming its effectiveness and competitive advantage.展开更多
Fluorescence microscopy is indispensable in life science research,yet denoising remains challenging due to varied biological samples and imaging conditions.We introduce a wavelet-enhanced transformer based on DnCNN th...Fluorescence microscopy is indispensable in life science research,yet denoising remains challenging due to varied biological samples and imaging conditions.We introduce a wavelet-enhanced transformer based on DnCNN that fuses wavelet preprocessing with a dual-branch transformer-convolutional neural network(CNN)architecture.Wavelet decomposition separates highand low-frequency components for targeted noise reduction;the CNN branch restores local details,whereas the transformer branch captures global context;and an adaptive loss balances quantitative fidelity with perceptual quality.On the fluorescence microscopy denoising benchmark,our method surpasses leading CNNand transformer-based approaches,improving peak signal-to-noise ratio by 2.34%and 0.88%and structural similarity index measure by 0.53%and 1.07%,respectively.This framework offers enhanced generalization and practical gains for fluorescence image denoising.展开更多
Wind power generation is subjected to complex and variable meteorological conditions,resulting in intermittent and volatile power generation.Accurate wind power prediction plays a crucial role in enabling the power gr...Wind power generation is subjected to complex and variable meteorological conditions,resulting in intermittent and volatile power generation.Accurate wind power prediction plays a crucial role in enabling the power grid dispatching departments to rationally plan power transmission and energy storage operations.This enhances the efficiency of wind power integration into the grid.It allows grid operators to anticipate and mitigate the impact of wind power fluctuations,significantly improving the resilience of wind farms and the overall power grid.Furthermore,it assists wind farm operators in optimizing the management of power generation facilities and reducing maintenance costs.Despite these benefits,accurate wind power prediction especially in extreme scenarios remains a significant challenge.To address this issue,a novel wind power prediction model based on learning approach is proposed by integrating wavelet transform and Transformer.First,a conditional generative adversarial network(CGAN)generates dynamic extreme scenarios guided by physical constraints and expert rules to ensure realism and capture critical features of wind power fluctuations under extremeconditions.Next,thewavelet transformconvolutional layer is applied to enhance sensitivity to frequency domain characteristics,enabling effective feature extraction fromextreme scenarios for a deeper understanding of input data.The model then leverages the Transformer’s self-attention mechanism to capture global dependencies between features,strengthening its sequence modelling capabilities.Case analyses verify themodel’s superior performance in extreme scenario prediction by effectively capturing local fluctuation featureswhile maintaining a grasp of global trends.Compared to other models,it achieves R-squared(R^(2))as high as 0.95,and the mean absolute error(MAE)and rootmean square error(RMSE)are also significantly lower than those of othermodels,proving its high accuracy and effectiveness in managing complex wind power generation conditions.展开更多
Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embe...Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embedding a unique identifier that identifies the owner of the content.Image watermarking can also be used to verify the authenticity of digital media,such as images or videos,by ascertaining the watermark information.In this paper,a mathematical chaos-based image watermarking technique is proposed using discrete wavelet transform(DWT),chaotic map,and Laplacian operator.The DWT can be used to decompose the image into its frequency components,chaos is used to provide extra security defense by encrypting the watermark signal,and the Laplacian operator with optimization is applied to the mid-frequency bands to find the sharp areas in the image.These mid-frequency bands are used to embed the watermarks by modifying the coefficients in these bands.The mid-sub-band maintains the invisible property of the watermark,and chaos combined with the second-order derivative Laplacian is vulnerable to attacks.Comprehensive experiments demonstrate that this approach is effective for common signal processing attacks,i.e.,compression,noise addition,and filtering.Moreover,this approach also maintains image quality through peak signal-to-noise ratio(PSNR)and structural similarity index metrics(SSIM).The highest achieved PSNR and SSIM values are 55.4 dB and 1.In the same way,normalized correlation(NC)values are almost 10%–20%higher than comparative research.These results support assistance in copyright protection in multimedia content.展开更多
Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do n...Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do not work well in removing speckle noise from sonar images and may even reduce their visual quality.To address this issue,a sonar image denoising method based on fuzzy clustering and the undecimated dual-tree complex wavelet transform is proposed.This method provides a perfect translation invariance and an improved directional selectivity during image decomposition,leading to richer representation of noise and edges in high frequency coefficients.Fuzzy clustering can separate noise from useful information according to the amplitude characteristics of speckle noise,preserving the latter and achieving the goal of noise removal.Additionally,the low frequency coefficients are smoothed using bilateral filtering to improve the visual quality of the image.To verify the effectiveness of the algorithm,multiple groups of ablation experiments were conducted,and speckle sonar images with different variances were evaluated and compared with existing speckle removal methods in the transform domain.The experimental results show that the proposed method can effectively improve image quality,especially in cases of severe noise,where it still achieves a good denoising performance.展开更多
Stratigraphic correlations are essential for the fine-scale characterization of reservoirs.However,conventional data-driven methods that rely solely on log data struggle to construct isochronous stratigraphic framewor...Stratigraphic correlations are essential for the fine-scale characterization of reservoirs.However,conventional data-driven methods that rely solely on log data struggle to construct isochronous stratigraphic frameworks for complex sedimentary environments and multi-source geological settings.In response,this study proposed an intelligent,automatic,log-seismic integrated stratigraphic correlation method that incorporates wavelet frequency-division transform(WFT)and dynamic time warping(DTW)(also referred to as the WFT-DTW method).This approach integrates seismic data as constraints into stratigraphic correlations,enabling accurate tracking of the seismic marker horizons through WFT.Under the constraints of framework construction,a DTW algorithm was introduced to correlate sublayer boundaries automatically.The effectiveness of the proposed method was verified through a stratigraphic correlation experiment on the SA0 Formation of the Xingshugang block in the Lasaxing oilfield,the Songliao Basin,China.In this block,the target layer exhibits sublayer thicknesses ranging from 5 m to 8 m,an average sandstone thickness of 2.1 m,and pronounced heterogeneity.The verification using 1760 layers in 160 post-test wells indicates that the WFT-DTW method intelligently compared sublayers in zones with underdeveloped faults and distinct marker horizons.As a result,the posterior correlation of 1682 layers was performed,with a coincidence rate of up to 95.6%.The proposed method can complement manual correlation efforts while also providing valuable technical support for the lithologic and sand body characterization of reservoirs.展开更多
Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces ...Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.展开更多
Drive-by techniques for bridge health monitoring have drawn increasing attention from researchers and practitioners,in the attempt to make bridge condition-based monitoring more cost-efficient.In this work,the authors...Drive-by techniques for bridge health monitoring have drawn increasing attention from researchers and practitioners,in the attempt to make bridge condition-based monitoring more cost-efficient.In this work,the authors propose a drive-by approach that takes advantage from bogie vertical accelerations to assess bridge health status.To do so,continuous wavelet transform is combined with multiple sparse autoencoders that allow for damage detection and localization across bridge span.According to authors’best knowledge,this is the first case in which an unsupervised technique,which relies on the use of sparse autoencoders,is used to localize damages.The bridge considered in this work is a Warren steel truss bridge,whose finite element model is referred to an actual structure,belonging to the Italian railway line.To investigate damage detection and localization performances,different operational variables are accounted for:train weight,forward speed and track irregularity evolution in time.Two configurations for the virtual measuring channels were investigated:as a result,better performances were obtained by exploiting the vertical accelerations of both the bogies of the leading coach instead of using only one single acceleration signal.展开更多
Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive met...Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive method for determining cardiac health.Various health practitioners use the ECG signal to ascertain critical information about the human heart.In this article,swarm intelligence approaches are used in the biomedical signal processing sector to enhance adaptive hybrid filters and empirical wavelet transforms(EWTs).At first,the white Gaussian noise is added to the input ECG signal and then applied to the EWT.The ECG signals are denoised by the proposed adaptive hybrid filter.The honey badge optimization(HBO)algorithm is utilized to optimize the EWT window function and adaptive hybrid filter weight parameters.The proposed approach is simulated by MATLAB 2018a using the MIT-BIH dataset with white Gaussian,electromyogram and electrode motion artifact noises.A comparison of the HBO approach with recursive least square-based adaptive filter,multichannel least means square,and discrete wavelet transform methods has been done in order to show the efficiency of the proposed adaptive hybrid filter.The experimental results show that the HBO approach supported by EWT and adaptive hybrid filter can be employed efficiently for cardiovascular signal denoising.展开更多
In accordance with the application requirements of high definition(HD) video surveillance systems,a real-time 5/3 lifting wavelet HD-video de-noising system is proposed with frame rate conversion(FRC) based on a field...In accordance with the application requirements of high definition(HD) video surveillance systems,a real-time 5/3 lifting wavelet HD-video de-noising system is proposed with frame rate conversion(FRC) based on a field-programmable gate array(FPGA),which uses a 3-level pipeline paralleled 5/3 lifting wavelet transformation and reconstruction structure,as well as a fast BayesS hrink adaptive threshold filtering module.The proposed system demonstrates de-noising performance,while also balancing system resources and achieving real-time processing.The experiments show that the proposed system's maximum operating frequency(through logic synthesis and layout using Quartus 13.1 software) can reach 178 MHz,based on the Altera Company's Stratix III EP3SE80 series FPGA.The proposed system can also satisfy real-time de-noising requirements of 1920 × 1080 at60 fps HD-video sources,while also significantly improving the peak signal to noise rate of the denoising images.Compared with similar systems,the system has the advantages of high operating frequency,and the ability to support multiple source formats for real-time processing.展开更多
Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectra...Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.展开更多
This work introduces a novel tool for interactive, real-time affine transformations of two dimensional IFS fractals. The tool uses some of the nice properties of the barycentric coordinates that are assigned to the po...This work introduces a novel tool for interactive, real-time affine transformations of two dimensional IFS fractals. The tool uses some of the nice properties of the barycentric coordinates that are assigned to the points that constitute the image ofa fractal, and thus enables any affine transformation of the affine basis, done by click-and-drag, to be immediately followed by the same affine transformation of the fractal. The barycentric coordinates can be relative to an arbitrary affine basis of ~2, but in order to have a better control over the fractal, a kind of minimal simplex that contains the fractal attractor is used.展开更多
This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method u...This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method using linear and nonlinear spatial prediction and operators to implement the wavelet transform and to make it reversible. The lifting scheme transform -includes three steps: split, predict, and update. Deslauriers-Dubuc (4, 2) wavelet transforms are used to process both synthetic and real data in our second-generation wavelet transform. The processing results show that random noise is effectively suppressed and the signal to noise ratio improves remarkably. The lifting wavelet transform is an efficient algorithm.展开更多
In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters...In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.展开更多
In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum ...In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum mean square error (MSE) and the steady state excess MSE of the WTD adaptive equalizer are obtained. Constant and time varying convergence factor adaptive algorithms are studied respectively. Computational complexities of WTD LMS equalizers are given. The equalizer in WTD shows much better convergence performance than that of the conventional in time domain.展开更多
Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-t...Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal.展开更多
基金Japan International Cooperation Agency(JICA)via Malaysia-Japan Linkage Research Grant 2024.
文摘Although the image dehazing problem has received considerable attention over recent years,the existing models often prioritise performance at the expense of complexity,making them unsuitable for real-world applications,which require algorithms to be deployed on resource constrained-devices.To address this challenge,we propose WaveLiteDehaze-Network(WLD-Net),an end-to-end dehazing model that delivers performance comparable to complex models while operating in real time and using significantly fewer parameters.This approach capitalises on the insight that haze predominantly affects low-frequency infor-mation.By exclusively processing the image in the frequency domain using discrete wavelet transform(DWT),we segregate the image into high and low frequencies and process them separately.This allows us to preserve high-frequency details and recover low-frequency components affected by haze,distinguishing our method from existing approaches that use spatial domain processing as the backbone,with DWT serving as an auxiliary component.DWT is applied at multiple levels for better in-formation retention while also accelerating computation by downsampling feature maps.Subsequently,a learning-based fusion mechanism reintegrates the processed frequencies to reconstruct the dehazed image.Experiments show that WLD-Net out-performs other low-parameter models on real-world hazy images and rivals much larger models,achieving the highest PSNR and SSIM scores on the O-Haze dataset.Qualitatively,the proposed method demonstrates its effectiveness in handling a diverse range of haze types,delivering visually pleasing results and robust performance,while also generalising well across different scenarios.With only 0.385 million parameters(more than 100 times smaller than comparable dehazing methods),WLD-Net processes 1024×1024 images in just 0.045 s,highlighting its applicability across various real-world scenarios.The code is available at https://github.com/AliMurtaza29/WLD-Net.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R435),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Psychological distress detection plays a critical role in modern healthcare,especially in ambient environments where continuous monitoring is essential for timely intervention.Advances in sensor technology and artificial intelligence(AI)have enabled the development of systems capable of mental health monitoring using multimodal data.However,existing models often struggle with contextual adaptation and real-time decision-making in dynamic settings.This paper addresses these challenges by proposing TRANS-HEALTH,a hybrid framework that integrates transformer-based inference with Belief-Desire-Intention(BDI)reasoning for real-time psychological distress detection.The framework utilizes a multimodal dataset containing EEG,GSR,heart rate,and activity data to predict distress while adapting to individual contexts.The methodology combines deep learning for robust pattern recognition and symbolic BDI reasoning to enable adaptive decision-making.The novelty of the approach lies in its seamless integration of transformermodelswith BDI reasoning,providing both high accuracy and contextual relevance in real time.Performance metrics such as accuracy,precision,recall,and F1-score are employed to evaluate the system’s performance.The results show that TRANS-HEALTH outperforms existing models,achieving 96.1% accuracy with 4.78 ms latency and significantly reducing false alerts,with an enhanced ability to engage users,making it suitable for deployment in wearable and remote healthcare environments.
基金Project (No. 2004CB217901) supported by the National Basic Re-search Program (973) of China
文摘Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on oper- ating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are ob- tained by using operational reliability evaluation.
文摘An effective approach is presented to extract welds from real-time radiographs, Firstly an algorithm based on an adaptive bidirectional threshold was proposed to segment the gradient image into ternary image, and then the bidirectional accumulator Hough Transform was developed to extract weld edges from the ternary image. Different values of the coefficient proposed in the threshold algorithm were tested, and the proposed approach was applied to extract welds from real-time radiographic images of different types of welds with defects. Results show that the proposed method is adaptive and effective to extract welds from real-time radiographs of linear welds.
基金National Natural Science Foundation of China(No.62176052)。
文摘In the vision transformer(ViT)architecture,image data are transformed into sequential data for processing,which may result in the loss of spatial positional information.While the self-attention mechanism enhances the capacity of ViT to capture global features,it compromises the preservation of fine-grained local feature information.To address these challenges,we propose a spatial positional enhancement module and a wavelet transform enhancement module tailored for ViT models.These modules aim to reduce spatial positional information loss during the patch embedding process and enhance the model’s feature extraction capabilities.The spatial positional enhancement module reinforces spatial information in sequential data through convolutional operations and multi-scale feature extraction.Meanwhile,the wavelet transform enhancement module utilizes the multi-scale analysis and frequency decomposition to improve the ViT’s understanding of global and local image structures.This enhancement also improves the ViT’s ability to process complex structures and intricate image details.Experiments on CIFAR-10,CIFAR-100 and ImageNet-1k datasets are done to compare the proposed method with advanced classification methods.The results show that the proposed model achieves a higher classification accuracy,confirming its effectiveness and competitive advantage.
基金supported by the National Natural Science Foundation of China(Grant No.62275210)the National Leading Talent Program,the National Young Talent Program,the Key Research and Development Program of Shaanxi(Grant No.2024SF2-GJHX-25)+5 种基金the Scientific Research Program Funded by the Education Department of Shaanxi Provincial Government(Grant No.24JS016)the Xidian University Specially Funded Project for Interdisciplinary Exploration(Grant No.TZJHF202523)the Fundamental Research Funds for Central Universities(Grant No.YJSJ25014)the Guangdong Provincial General Colleges and Universities Young Innovative Talents Research Project(Grant No.2024KQNCX172)the Shenzhen Science and Technology Program(Grant No.GJHZ20210705141805015)the Key Research Areas Support Science and Technology Project of Shenzhen Institute of Information Technology(Grant No.SZIIT2024KJ056).
文摘Fluorescence microscopy is indispensable in life science research,yet denoising remains challenging due to varied biological samples and imaging conditions.We introduce a wavelet-enhanced transformer based on DnCNN that fuses wavelet preprocessing with a dual-branch transformer-convolutional neural network(CNN)architecture.Wavelet decomposition separates highand low-frequency components for targeted noise reduction;the CNN branch restores local details,whereas the transformer branch captures global context;and an adaptive loss balances quantitative fidelity with perceptual quality.On the fluorescence microscopy denoising benchmark,our method surpasses leading CNNand transformer-based approaches,improving peak signal-to-noise ratio by 2.34%and 0.88%and structural similarity index measure by 0.53%and 1.07%,respectively.This framework offers enhanced generalization and practical gains for fluorescence image denoising.
基金funded by the Science and Technology Project of State Grid Corporation of China under Grant No.5108-202218280A-2-299-XG.
文摘Wind power generation is subjected to complex and variable meteorological conditions,resulting in intermittent and volatile power generation.Accurate wind power prediction plays a crucial role in enabling the power grid dispatching departments to rationally plan power transmission and energy storage operations.This enhances the efficiency of wind power integration into the grid.It allows grid operators to anticipate and mitigate the impact of wind power fluctuations,significantly improving the resilience of wind farms and the overall power grid.Furthermore,it assists wind farm operators in optimizing the management of power generation facilities and reducing maintenance costs.Despite these benefits,accurate wind power prediction especially in extreme scenarios remains a significant challenge.To address this issue,a novel wind power prediction model based on learning approach is proposed by integrating wavelet transform and Transformer.First,a conditional generative adversarial network(CGAN)generates dynamic extreme scenarios guided by physical constraints and expert rules to ensure realism and capture critical features of wind power fluctuations under extremeconditions.Next,thewavelet transformconvolutional layer is applied to enhance sensitivity to frequency domain characteristics,enabling effective feature extraction fromextreme scenarios for a deeper understanding of input data.The model then leverages the Transformer’s self-attention mechanism to capture global dependencies between features,strengthening its sequence modelling capabilities.Case analyses verify themodel’s superior performance in extreme scenario prediction by effectively capturing local fluctuation featureswhile maintaining a grasp of global trends.Compared to other models,it achieves R-squared(R^(2))as high as 0.95,and the mean absolute error(MAE)and rootmean square error(RMSE)are also significantly lower than those of othermodels,proving its high accuracy and effectiveness in managing complex wind power generation conditions.
基金supported by the researcher supporting Project number(RSPD2025R636),King Saud University,Riyadh,Saudi Arabia.
文摘Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embedding a unique identifier that identifies the owner of the content.Image watermarking can also be used to verify the authenticity of digital media,such as images or videos,by ascertaining the watermark information.In this paper,a mathematical chaos-based image watermarking technique is proposed using discrete wavelet transform(DWT),chaotic map,and Laplacian operator.The DWT can be used to decompose the image into its frequency components,chaos is used to provide extra security defense by encrypting the watermark signal,and the Laplacian operator with optimization is applied to the mid-frequency bands to find the sharp areas in the image.These mid-frequency bands are used to embed the watermarks by modifying the coefficients in these bands.The mid-sub-band maintains the invisible property of the watermark,and chaos combined with the second-order derivative Laplacian is vulnerable to attacks.Comprehensive experiments demonstrate that this approach is effective for common signal processing attacks,i.e.,compression,noise addition,and filtering.Moreover,this approach also maintains image quality through peak signal-to-noise ratio(PSNR)and structural similarity index metrics(SSIM).The highest achieved PSNR and SSIM values are 55.4 dB and 1.In the same way,normalized correlation(NC)values are almost 10%–20%higher than comparative research.These results support assistance in copyright protection in multimedia content.
基金the National Natural Science Foundation of China(No.62065001)the Yunnan Young and Middle-aged Academic and Technical Leaders Reserve Talent Project(No.202205AC160001)+1 种基金the Science and Technology Programs of Yunnan Provincial Science and Technology Department(No.202101BA070001-054)the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities Association(No.2019FH001(-066))。
文摘Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do not work well in removing speckle noise from sonar images and may even reduce their visual quality.To address this issue,a sonar image denoising method based on fuzzy clustering and the undecimated dual-tree complex wavelet transform is proposed.This method provides a perfect translation invariance and an improved directional selectivity during image decomposition,leading to richer representation of noise and edges in high frequency coefficients.Fuzzy clustering can separate noise from useful information according to the amplitude characteristics of speckle noise,preserving the latter and achieving the goal of noise removal.Additionally,the low frequency coefficients are smoothed using bilateral filtering to improve the visual quality of the image.To verify the effectiveness of the algorithm,multiple groups of ablation experiments were conducted,and speckle sonar images with different variances were evaluated and compared with existing speckle removal methods in the transform domain.The experimental results show that the proposed method can effectively improve image quality,especially in cases of severe noise,where it still achieves a good denoising performance.
基金funded by the Major Science and Technology Project of China National Petroleum Corporation(No.2023ZZ22YJ01).
文摘Stratigraphic correlations are essential for the fine-scale characterization of reservoirs.However,conventional data-driven methods that rely solely on log data struggle to construct isochronous stratigraphic frameworks for complex sedimentary environments and multi-source geological settings.In response,this study proposed an intelligent,automatic,log-seismic integrated stratigraphic correlation method that incorporates wavelet frequency-division transform(WFT)and dynamic time warping(DTW)(also referred to as the WFT-DTW method).This approach integrates seismic data as constraints into stratigraphic correlations,enabling accurate tracking of the seismic marker horizons through WFT.Under the constraints of framework construction,a DTW algorithm was introduced to correlate sublayer boundaries automatically.The effectiveness of the proposed method was verified through a stratigraphic correlation experiment on the SA0 Formation of the Xingshugang block in the Lasaxing oilfield,the Songliao Basin,China.In this block,the target layer exhibits sublayer thicknesses ranging from 5 m to 8 m,an average sandstone thickness of 2.1 m,and pronounced heterogeneity.The verification using 1760 layers in 160 post-test wells indicates that the WFT-DTW method intelligently compared sublayers in zones with underdeveloped faults and distinct marker horizons.As a result,the posterior correlation of 1682 layers was performed,with a coincidence rate of up to 95.6%.The proposed method can complement manual correlation efforts while also providing valuable technical support for the lithologic and sand body characterization of reservoirs.
基金supported by the Technology Innovation Program(20023566,‘Development and Demonstration of Industrial IoT and AI-Based Process Facility Intelligence Support System in Small and Medium Manufacturing Sites’)funded by the Ministry of Trade,Industry,&Energy(MOTIE,Republic of Korea).
文摘Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.
文摘Drive-by techniques for bridge health monitoring have drawn increasing attention from researchers and practitioners,in the attempt to make bridge condition-based monitoring more cost-efficient.In this work,the authors propose a drive-by approach that takes advantage from bogie vertical accelerations to assess bridge health status.To do so,continuous wavelet transform is combined with multiple sparse autoencoders that allow for damage detection and localization across bridge span.According to authors’best knowledge,this is the first case in which an unsupervised technique,which relies on the use of sparse autoencoders,is used to localize damages.The bridge considered in this work is a Warren steel truss bridge,whose finite element model is referred to an actual structure,belonging to the Italian railway line.To investigate damage detection and localization performances,different operational variables are accounted for:train weight,forward speed and track irregularity evolution in time.Two configurations for the virtual measuring channels were investigated:as a result,better performances were obtained by exploiting the vertical accelerations of both the bogies of the leading coach instead of using only one single acceleration signal.
文摘Cardiovascular diseases are the world’s leading cause of death;therefore cardiac health of the human heart has been a fascinating topic for decades.The electrocardiogram(ECG)signal is a comprehensive non-invasive method for determining cardiac health.Various health practitioners use the ECG signal to ascertain critical information about the human heart.In this article,swarm intelligence approaches are used in the biomedical signal processing sector to enhance adaptive hybrid filters and empirical wavelet transforms(EWTs).At first,the white Gaussian noise is added to the input ECG signal and then applied to the EWT.The ECG signals are denoised by the proposed adaptive hybrid filter.The honey badge optimization(HBO)algorithm is utilized to optimize the EWT window function and adaptive hybrid filter weight parameters.The proposed approach is simulated by MATLAB 2018a using the MIT-BIH dataset with white Gaussian,electromyogram and electrode motion artifact noises.A comparison of the HBO approach with recursive least square-based adaptive filter,multichannel least means square,and discrete wavelet transform methods has been done in order to show the efficiency of the proposed adaptive hybrid filter.The experimental results show that the HBO approach supported by EWT and adaptive hybrid filter can be employed efficiently for cardiovascular signal denoising.
基金Supported by the Spark Program of China(No.2013GA780007)Key Scientific Research Project of Guandong Agriculture Industry Business Polytechnic(No.xyzd1604)
文摘In accordance with the application requirements of high definition(HD) video surveillance systems,a real-time 5/3 lifting wavelet HD-video de-noising system is proposed with frame rate conversion(FRC) based on a field-programmable gate array(FPGA),which uses a 3-level pipeline paralleled 5/3 lifting wavelet transformation and reconstruction structure,as well as a fast BayesS hrink adaptive threshold filtering module.The proposed system demonstrates de-noising performance,while also balancing system resources and achieving real-time processing.The experiments show that the proposed system's maximum operating frequency(through logic synthesis and layout using Quartus 13.1 software) can reach 178 MHz,based on the Altera Company's Stratix III EP3SE80 series FPGA.The proposed system can also satisfy real-time de-noising requirements of 1920 × 1080 at60 fps HD-video sources,while also significantly improving the peak signal to noise rate of the denoising images.Compared with similar systems,the system has the advantages of high operating frequency,and the ability to support multiple source formats for real-time processing.
基金supported by the Henan Province Key R&D Project under Grant 241111210400the Henan Provincial Science and Technology Research Project under Grants 252102211047,252102211062,252102211055 and 232102210069+2 种基金the Jiangsu Provincial Scheme Double Initiative Plan JSS-CBS20230474,the XJTLU RDF-21-02-008the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205the Higher Education Teaching Reform Research and Practice Project of Henan Province under Grant 2024SJGLX0126。
文摘Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning,disaster emergency response,and resource management.However,existing methods face challenges such as spectral similarity between buildings and backgrounds,sensor variations,and insufficient computational efficiency.To address these challenges,this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network(MewCDNet),which integrates the advantages of Convolutional Neural Networks and Transformers,balances computational costs,and achieves high-performance building change detection.The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction,integrates multi-level feature maps through a multi-scale fusion strategy,and incorporates two key modules:Cross-temporal Difference Detection(CTDD)and Cross-scale Wavelet Refinement(CSWR).CTDD adopts a dual-branch architecture that combines pixel-wise differencing with semanticaware Euclidean distance weighting to enhance the distinction between true changes and background noise.CSWR integrates Haar-based Discrete Wavelet Transform with multi-head cross-attention mechanisms,enabling cross-scale feature fusion while significantly improving edge localization and suppressing spurious changes.Extensive experiments on four benchmark datasets demonstrate MewCDNet’s superiority over comparison methods:achieving F1 scores of 91.54%on LEVIR,93.70%on WHUCD,and 64.96%on S2Looking for building change detection.Furthermore,MewCDNet exhibits optimal performance on the multi-class⋅SYSU dataset(F1:82.71%),highlighting its exceptional generalization capability.
文摘This work introduces a novel tool for interactive, real-time affine transformations of two dimensional IFS fractals. The tool uses some of the nice properties of the barycentric coordinates that are assigned to the points that constitute the image ofa fractal, and thus enables any affine transformation of the affine basis, done by click-and-drag, to be immediately followed by the same affine transformation of the fractal. The barycentric coordinates can be relative to an arbitrary affine basis of ~2, but in order to have a better control over the fractal, a kind of minimal simplex that contains the fractal attractor is used.
文摘This paper discusses the principle and procedures of the second-generation wavelet transform and its application to the denoising of seismic data. Based on lifting steps, it is a flexible wavelet construction method using linear and nonlinear spatial prediction and operators to implement the wavelet transform and to make it reversible. The lifting scheme transform -includes three steps: split, predict, and update. Deslauriers-Dubuc (4, 2) wavelet transforms are used to process both synthetic and real data in our second-generation wavelet transform. The processing results show that random noise is effectively suppressed and the signal to noise ratio improves remarkably. The lifting wavelet transform is an efficient algorithm.
基金National Natural Science Foundation of China(60134010)
文摘In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.
文摘In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum mean square error (MSE) and the steady state excess MSE of the WTD adaptive equalizer are obtained. Constant and time varying convergence factor adaptive algorithms are studied respectively. Computational complexities of WTD LMS equalizers are given. The equalizer in WTD shows much better convergence performance than that of the conventional in time domain.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2002AA812038)
文摘Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal.