期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Implementing Convolutional Neural Networks to Detect Dangerous Objects in Video Surveillance Systems
1
作者 Carlos Rojas Cristian Bravo +1 位作者 Carlos Enrique Montenegro-Marín Rubén González-Crespo 《Computers, Materials & Continua》 2025年第12期5489-5507,共19页
The increasing prevalence of violent incidents in public spaces has created an urgent need for intelligent surveillance systems capable of detecting dangerous objects in real time.While traditional video surveillance ... The increasing prevalence of violent incidents in public spaces has created an urgent need for intelligent surveillance systems capable of detecting dangerous objects in real time.While traditional video surveillance relies on human monitoring,this approach suffers from limitations such as fatigue and delayed response times.This study addresses these challenges by developing an automated detection system using advanced deep learning techniques to enhance public safety.Our approach leverages state-of-the-art convolutional neural networks(CNNs),specifically You Only Look Once version 4(YOLOv4)and EfficientDet,for real-time object detection.The system was trained on a comprehensive dataset of over 50,000 images,enhanced through data augmentation techniques to improve robustness across varying lighting conditions and viewing angles.Cloud-based deployment on Amazon Web Services(AWS)ensured scalability and efficient processing.Experimental evaluations demonstrated high performance,with YOLOv4 achieving 92%accuracy and processing images in 0.45 s,while EfficientDet reached 93%accuracy with a slightly longer processing time of 0.55 s per image.Field tests in high-traffic environments such as train stations and shopping malls confirmed the system’s reliability,with a false alarm rate of only 4.5%.The integration of automatic alerts enabled rapid security responses to potential threats.The proposed CNN-based system provides an effective solution for real-time detection of dangerous objects in video surveillance,significantly improving response times and public safety.While YOLOv4 proved more suitable for speed-critical applications,EfficientDet offered marginally better accuracy.Future work will focus on optimizing the system for low-light conditions and further reducing false positives.This research contributes to the advancement of AI-driven surveillance technologies,offering a scalable framework adaptable to various security scenarios. 展开更多
关键词 Automatic detection of objects convolutional neural networks deep learning real-time image processing video surveillance systems automatic alerts
在线阅读 下载PDF
基于ZYNQ UltraScale+MPSoC的实时视频图像锐化算法实现
2
作者 王正吉 范永杰 +1 位作者 李冠霖 刘宇宇 《软件》 2023年第5期172-175,共4页
本文通过为ZYNQ UltraScale+MPSoC移植Linux操作系统、交叉编译QT和OpenCV应用程序、外接一个USB摄像头、显示器,搭建了一套实时视频图像锐化处理系统。系统调用V4L2接口采集视频图像信息,然后将视频图像信息从内核空间映射到用户空间,... 本文通过为ZYNQ UltraScale+MPSoC移植Linux操作系统、交叉编译QT和OpenCV应用程序、外接一个USB摄像头、显示器,搭建了一套实时视频图像锐化处理系统。系统调用V4L2接口采集视频图像信息,然后将视频图像信息从内核空间映射到用户空间,便于应用程序快速读取、处理视频数据。另外通过QT应用程序调用OpenGL指令以驱动GPU采用3×3模板的Laplacian算子对采集到的视频图像进行迭代两次的锐化处理,最终将处理结果在显示器上显示。 展开更多
关键词 ZYNQ UltraScale+MPSoC 实时视频图像锐化处理系统 GPU OpenGL V4L2
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部