In this paper, a novel scheduling mechanism is proposed to handle the real-time overload problem by maximizing the cumulative values of three types of tasks: the soft, the hard and the imprecise tasks. The simulation...In this paper, a novel scheduling mechanism is proposed to handle the real-time overload problem by maximizing the cumulative values of three types of tasks: the soft, the hard and the imprecise tasks. The simulation results show that the performance of our presented mechanism in this paper is greatly improved, much better than that of the other three mechanisms: earliest deadline first (EDF), highest value first (HVF) and highest density first (HDF), under the same conditions of all nominal loads and task type proportions.展开更多
In a periodic real-time system scheduled with the Earliest Deadline First (EDF) algorithm,it is necessary to compress some current tasks to avoid overloading if new task requests to run. Compressing a task means that ...In a periodic real-time system scheduled with the Earliest Deadline First (EDF) algorithm,it is necessary to compress some current tasks to avoid overloading if new task requests to run. Compressing a task means that its period is prolonged while its computation time keeps unchanged. An interesting problem is to find the earliest time to release new tasks without any deadline missing,that is,the earliest smooth insertion time. In this paper,a general frame to calculate the earliest time with multiple rounds of deadline checking is given,which shows that the checking can be done from the request time of the new tasks. A smart way is provided and proved,which takes the value of theΔchecking of the current round as the time step to the next. These techniques potentially reduce the amount of the calculation and the number of the rounds of the checking to get the earliest time. Simulation results are also given to support the conclusion.展开更多
A checkpointing scheme for relevant distributed real-time tasks which can be scheduled as a DAG is proposed. A typical algorithm, OSA, is selected for DAG scheduling. A new methods based a new structure, Scheduled Clu...A checkpointing scheme for relevant distributed real-time tasks which can be scheduled as a DAG is proposed. A typical algorithm, OSA, is selected for DAG scheduling. A new methods based a new structure, Scheduled Cluster Tree, is presented to calculate the slack time of each task in the task cluster. In the checkpointing scheme, the optimal checkpoint intervals which minimize the approximated failure probability are derived formally and validated experimentally. The complexity of approximated failure probability is quite small compared with that of the exact probability. Meanwhile, the consistency of the checkpointing is discussed also.展开更多
Harvesting energy for execution from the environment (e.g., solar, wind energy) has recently emerged as a feasible solution for low-cost and low-power distributed systems. When real-time responsiveness of a given appl...Harvesting energy for execution from the environment (e.g., solar, wind energy) has recently emerged as a feasible solution for low-cost and low-power distributed systems. When real-time responsiveness of a given application has to be guaranteed, the recharge rate of obtaining energy inevitably affects the task scheduling. This paper extends our previous works in?[1] [2] to explore the real-time task assignment problem on an energy-harvesting distributed system. The solution using Ant Colony Optimization (ACO) and several significant improvements are presented. Simulations compare the performance of the approaches, which demonstrate the solutions effectiveness and efficiency.展开更多
AI(Artificial Intelligence)workloads are proliferating in modernreal-time systems.As the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be reexami...AI(Artificial Intelligence)workloads are proliferating in modernreal-time systems.As the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be reexamined.In particular,it is difficult to immediately handle changes inreal-time tasks without violating the deadline constraints.To cope with thissituation,this paper analyzes the task situations of AI workloads and findsthe following two observations.First,resource planning for AI workloadsis a complicated search problem that requires much time for optimization.Second,although the task set of an AI workload may change over time,thepossible combinations of the task sets are known in advance.Based on theseobservations,this paper proposes a new resource planning scheme for AIworkloads that supports the re-planning of resources.Instead of generatingresource plans on the fly,the proposed scheme pre-determines resourceplans for various combinations of tasks.Thus,in any case,the workload isimmediately executed according to the resource plan maintained.Specifically,the proposed scheme maintains an optimized CPU(Central Processing Unit)and memory resource plan using genetic algorithms and applies it as soonas the workload changes.The proposed scheme is implemented in the opensourcesimulator SimRTS for the validation of its effectiveness.Simulationexperiments show that the proposed scheme reduces the energy consumptionof CPU and memory by 45.5%on average without deadline misses.展开更多
Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we re...Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we represent those two goals as the minimization of the average response time and the average task laxity.To achieve this,we propose a genetic-based algorithm with problem-specific and efficient genetic operators.Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency.The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.展开更多
Multi-core processor is widely used as the running platform for safety-critical real-time systems such as spacecraft,and various types of real-time tasks are dynamically added at runtime.In order to improve the utiliz...Multi-core processor is widely used as the running platform for safety-critical real-time systems such as spacecraft,and various types of real-time tasks are dynamically added at runtime.In order to improve the utilization of multi-core processors and ensure the real-time performance of the system,it is necessary to adopt a reasonable real-time task allocation method,but the existing methods are only for single-core processors or the performance is too low to be applicable.Aiming at the task allocation problem when mixed real-time tasks are dynamically added,we propose a heuristic mixed real-time task allocation algorithm of virtual utilization VU-WF(Virtual Utilization Worst Fit)in multi-core processor.First,a 4-tuple task model is established to describe the fixedpoint task and the sporadic task in a unified manner.Then,a VDS(Virtual Deferral Server)for serving execution requests of fixed-point task is constructed and a schedulability test of the mixed task set is derived.Finally,combined with the analysis of VDS's capacity,VU-WF is proposed,which selects cores in ascending order of virtual utilization for the schedulability test.Experiments show that the overall performance of VU-WF is better than available algorithms,not only has a good schedulable ratio and load balancing but also has the lowest runtime overhead.In a 4-core processor,compared with available algorithms of the same schedulability ratio,the load balancing is improved by 73.9%,and the runtime overhead is reduced by 38.3%.In addition,we also develop a visual multi-core mixed task scheduling simulator RT-MCSS(open source)to facilitate the design and verification of multi-core scheduling for users.As the high performance,VU-WF can be widely used in resource-constrained and safety-critical real-time systems,such as spacecraft,self-driving cars,industrial robots,etc.展开更多
Spinning production is a typical continuous manufacturing process characterized by high speed and uncertain dynamics. Each manufacturing unit in spinning production produces various real-time tasks, which may affect p...Spinning production is a typical continuous manufacturing process characterized by high speed and uncertain dynamics. Each manufacturing unit in spinning production produces various real-time tasks, which may affect production efficiency and yam quality if not processed in time. This paper presents an edge computing- based method that is different from traditional centralized cloud computation because its decentralization characteristics meet the high-speed and high-response requirements of yam production. Edge computing nodes, real-time tasks, and edge computing resources are defined. A system model is established, and a real-time task processing method is proposed for the edge computing scenario. Experimental results indicate that the proposed real-time task processing method based on edge computing can effectively solve the delay problem of real-time task processing in spinning cyber-physical systems, save bandwidth, and enhance the security of task transmission.展开更多
Multiple performance requirements need to be guaranteed in some real-time applications such as multimedia data processing and real-time signal processing in addition to timing constraints. Unfortunately, most conventi...Multiple performance requirements need to be guaranteed in some real-time applications such as multimedia data processing and real-time signal processing in addition to timing constraints. Unfortunately, most conventional scheduling algorithms only take one or two dimensions of them into account. Motivated by this fact, this paper investigates the problem of providing multiple performance guarantees including timeliness, QoS, throughput, QoS fairness and load balancing for a set of independent tasks by dynamic scheduling. We build a scheduler model that can be used for multi-dimensional scheduling. Based on the scheduler model, we propose a heuristic multi-dimensional scheduling strategy, MDSS, consisting of three steps. The first step can be of any existing real-time scheduling algorithm that determines to accept or reject a task. In step 2, we put forward a novel algorithm MQFQ to enhance the QoS levels of accepted tasks, and to make these tasks have fair QoS levels at the same time. Another new algorithm ITLB is proposed and used in step 3. The ITLB algorithm is capable of balancing load and improving throughput of the system. To evaluate the performance of MDSS, we perform extensive simulation experiments to compare MDSS strategy with MDSR strategy, DASAP and DALAP algorithms. Experimental results show that MDSS significantly outperforms MDSR, DASAP and DALAP.展开更多
The emergent task is a kind of uncertain event that satellite systems often encounter in the application process.In this paper,the multi-satellite distributed coordinating and scheduling problem considering emergent t...The emergent task is a kind of uncertain event that satellite systems often encounter in the application process.In this paper,the multi-satellite distributed coordinating and scheduling problem considering emergent tasks is studied.Due to the limitation of onboard computational resources and time,common online onboard rescheduling methods for such problems usually adopt simple greedy methods,sacrificing the solution quality to deliver timely solutions.To better solve the problem,a new multi-satellite onboard scheduling and coordinating framework based on multi-solution integration is proposed.This method uses high computational power on the ground and generates multiple solutions,changing the complex onboard rescheduling problem to a solution selection problem.With this method,it is possible that little time is used to generate a solution that is as good as the solutions on the ground.We further propose several multi-satellite coordination methods based on the multi-agent Markov decision process(MMDP)and mixed-integer programming(MIP).These methods enable the satellite to make independent decisions and produce high-quality solutions.Compared with the traditional centralized scheduling method,the proposed distributed method reduces the cost of satellite communication and increases the response speed for emergent tasks.Extensive experiments show that the proposed multi-solution integration framework and the distributed coordinating strategies are efficient and effective for onboard scheduling considering emergent tasks.展开更多
This paper presents an optimal checkpoint strategy for fault-tolerance in real-time systems where transient faults occur in Poisson distribution. In our environment, multiple real-time tasks with different deadlines a...This paper presents an optimal checkpoint strategy for fault-tolerance in real-time systems where transient faults occur in Poisson distribution. In our environment, multiple real-time tasks with different deadlines and harmonic periods are scheduled in the system by rate-monotonic algorithm, and checkpoints are inserted at a constant interval in each task. When a fault is detected, the system carries out rollback to the latest checkpoint and re-executes tasks. The maximum number of re-executable checkpoints and an equation to check schedulability are derived, and the optimal number of checkpoints is selected to maximize the probability of completing all the tasks within their deadlines.展开更多
Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to t...Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to the control objective, the new strategy was expected to optimize the control system for better performance and yet guarantee the schedulability of all tasks under overrun. The schedulability of the real-time systems with p-period overruns was analyzed, and the corresponding stability criteria was given as well. The simulation results show that the new approach can improve the performance of control system compared to that of conventional abort strategy, it can reduce the overshoot and adjust time as well as ensure the schedulability and stability.展开更多
The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for he...The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.展开更多
μC/OS-Ⅱ is an open source real-time kernel adopting priority preemptive schedule strategy. Aiming at the problem of μC/OS-Ⅱ failing to support homology priority tasks scheduling, an approach for solution is propos...μC/OS-Ⅱ is an open source real-time kernel adopting priority preemptive schedule strategy. Aiming at the problem of μC/OS-Ⅱ failing to support homology priority tasks scheduling, an approach for solution is proposed. The basic idea is adding round-robin scheduling strategy in its original scheduler in order to schedule homology priority tasks through time slice roundrobin. Implementation approach is given in detail. Firstly, the Task Control Block (TCB) is extended. And then, a new priority index table is created, in which each index pointer points to a set of homology priority tasks. Eventually, on the basis of reconstructing μC/OS-Ⅱ real-time kernel, task scheduling module is rewritten. Otherwise, schedulability of homology task supported by modified kernel had been analyzed, and deadline formula of created homology tasks is given. By theoretical analysis and experiment verification, the modified kernel can support homology priority tasks scheduling, meanwhile, it also remains preemptive property of original μC/OS-Ⅱ.展开更多
Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does no...Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems.展开更多
Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation...Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance.展开更多
Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilize...Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilized as the anode electrode,while graphite rods served as the cathode electrode in assembling the galvanic cell.The FeCo@CF electrode exhibited rapid reactivity with PMS,generating reactive oxygen species that efficiently degrade organic pollutants.The degradation experiments indicate that complete bisphenol A(BPA)degradation was achieved within 10 min under optimal conditions.The real-time electrochemical signal was measured in time during the catalytic reaction,and a linear relationship between BPA concentration and the real-time charge(Q)was confirmed by the equation ln(C0/C)=4.393Q(correlation coefficients,R^(2)=0.998).Furthermore,experiments conducted with aureomycin and tetracycline further validated the effectiveness of the monitoring sensor.First-principles investigation confirmed the superior adsorption energy and improved electron transfer in FeCo@CF.The integration of pollutant degradation with in situ monitoring of catalytic reactions offers promising prospects for expanding the scope of the monitoring of catalytic processes and making significant contributions to environmental purification.展开更多
In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing perme...In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing permeability and injection-induced seismicity during hot dry rock geothermal extraction.For optimizing injection strategies and improving engineering safety,real-time permeability,deformation,and energy release characteristics of fractured granite samples driven by injected water pressure under different critical sliding conditions were evaluated.The results indicated that:(1)A low injection water pressure induced intermittent small-deformation stick-slip behavior in fractures,and a high injection pressure primarily caused continuous high-speed large-deformation sliding in fractures.The optimal injection water pressure range was defined for enhancing hydraulic shear permeability and preventing large injection-induced earthquakes.(2)Under the same experimental conditions,fracture sliding was deemed as the major factor that enhanced the hydraulic shear-permeability enhancement and the maximum permeability increased by 36.54 and 41.59 times,respectively,in above two slip modes.(3)Based on the real-time transient evolution of water pressure during fracture sliding,the variation coefficients of slip rate,permeability,and water pressure were fitted,and the results were different from those measured under quasi-static conditions.(4)The maximum and minimum shear strength criteria for injection-induced fracture sliding were also determined(μ=0.6665 andμ=0.1645,respectively,μis friction coefficient).Using the 3D(three-dimensional)fracture surface scanning technology,the weakening effect of injection pressure on fracture surface damage characteristics was determined,which provided evidence for the geological markers of fault sliding mode and sliding nature transitions under the fluid influence.展开更多
基金supported by the Shanghai Applied Materials Foundation (Grant No.06SA18)
文摘In this paper, a novel scheduling mechanism is proposed to handle the real-time overload problem by maximizing the cumulative values of three types of tasks: the soft, the hard and the imprecise tasks. The simulation results show that the performance of our presented mechanism in this paper is greatly improved, much better than that of the other three mechanisms: earliest deadline first (EDF), highest value first (HVF) and highest density first (HDF), under the same conditions of all nominal loads and task type proportions.
基金Changsha Municipal Science and Technology Foundation(K15ZD053-43).
文摘In a periodic real-time system scheduled with the Earliest Deadline First (EDF) algorithm,it is necessary to compress some current tasks to avoid overloading if new task requests to run. Compressing a task means that its period is prolonged while its computation time keeps unchanged. An interesting problem is to find the earliest time to release new tasks without any deadline missing,that is,the earliest smooth insertion time. In this paper,a general frame to calculate the earliest time with multiple rounds of deadline checking is given,which shows that the checking can be done from the request time of the new tasks. A smart way is provided and proved,which takes the value of theΔchecking of the current round as the time step to the next. These techniques potentially reduce the amount of the calculation and the number of the rounds of the checking to get the earliest time. Simulation results are also given to support the conclusion.
文摘A checkpointing scheme for relevant distributed real-time tasks which can be scheduled as a DAG is proposed. A typical algorithm, OSA, is selected for DAG scheduling. A new methods based a new structure, Scheduled Cluster Tree, is presented to calculate the slack time of each task in the task cluster. In the checkpointing scheme, the optimal checkpoint intervals which minimize the approximated failure probability are derived formally and validated experimentally. The complexity of approximated failure probability is quite small compared with that of the exact probability. Meanwhile, the consistency of the checkpointing is discussed also.
文摘Harvesting energy for execution from the environment (e.g., solar, wind energy) has recently emerged as a feasible solution for low-cost and low-power distributed systems. When real-time responsiveness of a given application has to be guaranteed, the recharge rate of obtaining energy inevitably affects the task scheduling. This paper extends our previous works in?[1] [2] to explore the real-time task assignment problem on an energy-harvesting distributed system. The solution using Ant Colony Optimization (ACO) and several significant improvements are presented. Simulations compare the performance of the approaches, which demonstrate the solutions effectiveness and efficiency.
基金This work was partly supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by theKorean government(MSIT)(No.2021-0-02068,Artificial Intelligence Innovation Hub)(No.RS-2022-00155966,Artificial Intelligence Convergence Innovation Human Resources Development(Ewha University)).
文摘AI(Artificial Intelligence)workloads are proliferating in modernreal-time systems.As the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be reexamined.In particular,it is difficult to immediately handle changes inreal-time tasks without violating the deadline constraints.To cope with thissituation,this paper analyzes the task situations of AI workloads and findsthe following two observations.First,resource planning for AI workloadsis a complicated search problem that requires much time for optimization.Second,although the task set of an AI workload may change over time,thepossible combinations of the task sets are known in advance.Based on theseobservations,this paper proposes a new resource planning scheme for AIworkloads that supports the re-planning of resources.Instead of generatingresource plans on the fly,the proposed scheme pre-determines resourceplans for various combinations of tasks.Thus,in any case,the workload isimmediately executed according to the resource plan maintained.Specifically,the proposed scheme maintains an optimized CPU(Central Processing Unit)and memory resource plan using genetic algorithms and applies it as soonas the workload changes.The proposed scheme is implemented in the opensourcesimulator SimRTS for the validation of its effectiveness.Simulationexperiments show that the proposed scheme reduces the energy consumptionof CPU and memory by 45.5%on average without deadline misses.
文摘Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we represent those two goals as the minimization of the average response time and the average task laxity.To achieve this,we propose a genetic-based algorithm with problem-specific and efficient genetic operators.Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency.The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.
文摘Multi-core processor is widely used as the running platform for safety-critical real-time systems such as spacecraft,and various types of real-time tasks are dynamically added at runtime.In order to improve the utilization of multi-core processors and ensure the real-time performance of the system,it is necessary to adopt a reasonable real-time task allocation method,but the existing methods are only for single-core processors or the performance is too low to be applicable.Aiming at the task allocation problem when mixed real-time tasks are dynamically added,we propose a heuristic mixed real-time task allocation algorithm of virtual utilization VU-WF(Virtual Utilization Worst Fit)in multi-core processor.First,a 4-tuple task model is established to describe the fixedpoint task and the sporadic task in a unified manner.Then,a VDS(Virtual Deferral Server)for serving execution requests of fixed-point task is constructed and a schedulability test of the mixed task set is derived.Finally,combined with the analysis of VDS's capacity,VU-WF is proposed,which selects cores in ascending order of virtual utilization for the schedulability test.Experiments show that the overall performance of VU-WF is better than available algorithms,not only has a good schedulable ratio and load balancing but also has the lowest runtime overhead.In a 4-core processor,compared with available algorithms of the same schedulability ratio,the load balancing is improved by 73.9%,and the runtime overhead is reduced by 38.3%.In addition,we also develop a visual multi-core mixed task scheduling simulator RT-MCSS(open source)to facilitate the design and verification of multi-core scheduling for users.As the high performance,VU-WF can be widely used in resource-constrained and safety-critical real-time systems,such as spacecraft,self-driving cars,industrial robots,etc.
基金the Fundamental Research Funds for the Central Universities and the Graduate Student Innovation Fund of Donghua University (Grant No. CUSF-DH-D-2019096)the National Key Research and Development Plan of China (Grant No. 2017YFB1304000)the National Natural Science Foundation of China (Grant No. 51475301).
文摘Spinning production is a typical continuous manufacturing process characterized by high speed and uncertain dynamics. Each manufacturing unit in spinning production produces various real-time tasks, which may affect production efficiency and yam quality if not processed in time. This paper presents an edge computing- based method that is different from traditional centralized cloud computation because its decentralization characteristics meet the high-speed and high-response requirements of yam production. Edge computing nodes, real-time tasks, and edge computing resources are defined. A system model is established, and a real-time task processing method is proposed for the edge computing scenario. Experimental results indicate that the proposed real-time task processing method based on edge computing can effectively solve the delay problem of real-time task processing in spinning cyber-physical systems, save bandwidth, and enhance the security of task transmission.
基金supported by the National Natural Science Foundation of China under Grant No.60673082the Special Funds of Authors of Excellent Doctoral Dissertation in China under Grant No.200084.
文摘Multiple performance requirements need to be guaranteed in some real-time applications such as multimedia data processing and real-time signal processing in addition to timing constraints. Unfortunately, most conventional scheduling algorithms only take one or two dimensions of them into account. Motivated by this fact, this paper investigates the problem of providing multiple performance guarantees including timeliness, QoS, throughput, QoS fairness and load balancing for a set of independent tasks by dynamic scheduling. We build a scheduler model that can be used for multi-dimensional scheduling. Based on the scheduler model, we propose a heuristic multi-dimensional scheduling strategy, MDSS, consisting of three steps. The first step can be of any existing real-time scheduling algorithm that determines to accept or reject a task. In step 2, we put forward a novel algorithm MQFQ to enhance the QoS levels of accepted tasks, and to make these tasks have fair QoS levels at the same time. Another new algorithm ITLB is proposed and used in step 3. The ITLB algorithm is capable of balancing load and improving throughput of the system. To evaluate the performance of MDSS, we perform extensive simulation experiments to compare MDSS strategy with MDSR strategy, DASAP and DALAP algorithms. Experimental results show that MDSS significantly outperforms MDSR, DASAP and DALAP.
基金supported by the National Natural Science Foundation of China(72001212,71701204,71801218)the China Hunan Postgraduate Research Innovating Project(CX2018B020)。
文摘The emergent task is a kind of uncertain event that satellite systems often encounter in the application process.In this paper,the multi-satellite distributed coordinating and scheduling problem considering emergent tasks is studied.Due to the limitation of onboard computational resources and time,common online onboard rescheduling methods for such problems usually adopt simple greedy methods,sacrificing the solution quality to deliver timely solutions.To better solve the problem,a new multi-satellite onboard scheduling and coordinating framework based on multi-solution integration is proposed.This method uses high computational power on the ground and generates multiple solutions,changing the complex onboard rescheduling problem to a solution selection problem.With this method,it is possible that little time is used to generate a solution that is as good as the solutions on the ground.We further propose several multi-satellite coordination methods based on the multi-agent Markov decision process(MMDP)and mixed-integer programming(MIP).These methods enable the satellite to make independent decisions and produce high-quality solutions.Compared with the traditional centralized scheduling method,the proposed distributed method reduces the cost of satellite communication and increases the response speed for emergent tasks.Extensive experiments show that the proposed multi-solution integration framework and the distributed coordinating strategies are efficient and effective for onboard scheduling considering emergent tasks.
文摘This paper presents an optimal checkpoint strategy for fault-tolerance in real-time systems where transient faults occur in Poisson distribution. In our environment, multiple real-time tasks with different deadlines and harmonic periods are scheduled in the system by rate-monotonic algorithm, and checkpoints are inserted at a constant interval in each task. When a fault is detected, the system carries out rollback to the latest checkpoint and re-executes tasks. The maximum number of re-executable checkpoints and an equation to check schedulability are derived, and the optimal number of checkpoints is selected to maximize the probability of completing all the tasks within their deadlines.
基金Project (60505018) supported by the National Natural Science Foundation of China
文摘Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to the control objective, the new strategy was expected to optimize the control system for better performance and yet guarantee the schedulability of all tasks under overrun. The schedulability of the real-time systems with p-period overruns was analyzed, and the corresponding stability criteria was given as well. The simulation results show that the new approach can improve the performance of control system compared to that of conventional abort strategy, it can reduce the overshoot and adjust time as well as ensure the schedulability and stability.
基金funded by the ICT Division of theMinistry of Posts,Telecommunications,and Information Technology of Bangladesh under Grant Number 56.00.0000.052.33.005.21-7(Tracking No.22FS15306)support from the University of Rajshahi.
文摘The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.
基金Supported by the "Chunhui" Plan of Ministry of Education of China (Z2005-2-11013)
文摘μC/OS-Ⅱ is an open source real-time kernel adopting priority preemptive schedule strategy. Aiming at the problem of μC/OS-Ⅱ failing to support homology priority tasks scheduling, an approach for solution is proposed. The basic idea is adding round-robin scheduling strategy in its original scheduler in order to schedule homology priority tasks through time slice roundrobin. Implementation approach is given in detail. Firstly, the Task Control Block (TCB) is extended. And then, a new priority index table is created, in which each index pointer points to a set of homology priority tasks. Eventually, on the basis of reconstructing μC/OS-Ⅱ real-time kernel, task scheduling module is rewritten. Otherwise, schedulability of homology task supported by modified kernel had been analyzed, and deadline formula of created homology tasks is given. By theoretical analysis and experiment verification, the modified kernel can support homology priority tasks scheduling, meanwhile, it also remains preemptive property of original μC/OS-Ⅱ.
文摘Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems.
文摘Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance.
基金supported by the National Natural Science Foundation of China(No.22306076)the Natural Science Foundation of Jiangsu Province(No.BK20230676)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.22KJB610011).
文摘Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilized as the anode electrode,while graphite rods served as the cathode electrode in assembling the galvanic cell.The FeCo@CF electrode exhibited rapid reactivity with PMS,generating reactive oxygen species that efficiently degrade organic pollutants.The degradation experiments indicate that complete bisphenol A(BPA)degradation was achieved within 10 min under optimal conditions.The real-time electrochemical signal was measured in time during the catalytic reaction,and a linear relationship between BPA concentration and the real-time charge(Q)was confirmed by the equation ln(C0/C)=4.393Q(correlation coefficients,R^(2)=0.998).Furthermore,experiments conducted with aureomycin and tetracycline further validated the effectiveness of the monitoring sensor.First-principles investigation confirmed the superior adsorption energy and improved electron transfer in FeCo@CF.The integration of pollutant degradation with in situ monitoring of catalytic reactions offers promising prospects for expanding the scope of the monitoring of catalytic processes and making significant contributions to environmental purification.
基金supported by the National Natural Science Foundation of China (Grant No.52122405)Science and Technology Major Project of Shanxi Province,China (Grant No.202101060301024)Science and Technology Major Project of Xizang Autonomous Region,China (Grant No.XZ202201ZD0004G0204).
文摘In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing permeability and injection-induced seismicity during hot dry rock geothermal extraction.For optimizing injection strategies and improving engineering safety,real-time permeability,deformation,and energy release characteristics of fractured granite samples driven by injected water pressure under different critical sliding conditions were evaluated.The results indicated that:(1)A low injection water pressure induced intermittent small-deformation stick-slip behavior in fractures,and a high injection pressure primarily caused continuous high-speed large-deformation sliding in fractures.The optimal injection water pressure range was defined for enhancing hydraulic shear permeability and preventing large injection-induced earthquakes.(2)Under the same experimental conditions,fracture sliding was deemed as the major factor that enhanced the hydraulic shear-permeability enhancement and the maximum permeability increased by 36.54 and 41.59 times,respectively,in above two slip modes.(3)Based on the real-time transient evolution of water pressure during fracture sliding,the variation coefficients of slip rate,permeability,and water pressure were fitted,and the results were different from those measured under quasi-static conditions.(4)The maximum and minimum shear strength criteria for injection-induced fracture sliding were also determined(μ=0.6665 andμ=0.1645,respectively,μis friction coefficient).Using the 3D(three-dimensional)fracture surface scanning technology,the weakening effect of injection pressure on fracture surface damage characteristics was determined,which provided evidence for the geological markers of fault sliding mode and sliding nature transitions under the fluid influence.