期刊文献+
共找到2,918篇文章
< 1 2 146 >
每页显示 20 50 100
Enhancing IoT Resilience at the Edge:A Resource-Efficient Framework for Real-Time Anomaly Detection in Streaming Data
1
作者 Kirubavathi G. Arjun Pulliyasseri +5 位作者 Aswathi Rajesh Amal Ajayan Sultan Alfarhood Mejdl Safran Meshal Alfarhood Jungpil Shin 《Computer Modeling in Engineering & Sciences》 2025年第6期3005-3031,共27页
The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability... The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices. 展开更多
关键词 Anomaly detection streaming data IOT IIoT TMoT real-time LIGHTWEIGHT modeling
在线阅读 下载PDF
IoT-Based Real-Time Medical-Related Human Activity Recognition Using Skeletons and Multi-Stage Deep Learning for Healthcare 被引量:1
2
作者 Subrata Kumer Paul Abu Saleh Musa Miah +3 位作者 Rakhi Rani Paul Md.EkramulHamid Jungpil Shin Md Abdur Rahim 《Computers, Materials & Continua》 2025年第8期2513-2530,共18页
The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for he... The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs. 展开更多
关键词 real-time human motion recognition(HMR) ENConvLSTM EfficientNet ConvLSTM skeleton data NTU RGB+D 120 dataset MRHA
在线阅读 下载PDF
Sign language data quality improvement based on dual information streams
3
作者 CAI Jialiang YUAN Tiantian 《Optoelectronics Letters》 2025年第6期342-347,共6页
Sign language dataset is essential in sign language recognition and translation(SLRT). Current public sign language datasets are small and lack diversity, which does not meet the practical application requirements for... Sign language dataset is essential in sign language recognition and translation(SLRT). Current public sign language datasets are small and lack diversity, which does not meet the practical application requirements for SLRT. However, making a large-scale and diverse sign language dataset is difficult as sign language data on the Internet is scarce. In making a large-scale and diverse sign language dataset, some sign language data qualities are not up to standard. This paper proposes a two information streams transformer(TIST) model to judge whether the quality of sign language data is qualified. To verify that TIST effectively improves sign language recognition(SLR), we make two datasets, the screened dataset and the unscreened dataset. In this experiment, this paper uses visual alignment constraint(VAC) as the baseline model. The experimental results show that the screened dataset can achieve better word error rate(WER) than the unscreened dataset. 展开更多
关键词 sign language dataset data quality improvement two information streams t dual information streams sign language data sign language translation sign language recognition sign language datasets
原文传递
Modeling and Performance Evaluation of Streaming Data Processing System in IoT Architecture
4
作者 Feng Zhu Kailin Wu Jie Ding 《Computers, Materials & Continua》 2025年第5期2573-2598,共26页
With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Alth... With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads. 展开更多
关键词 System modeling performance evaluation streaming data process IoT system PEPA
在线阅读 下载PDF
TRANSHEALTH:A Transformer-BDI Hybrid Framework for Real-Time Psychological Distress Detection in Ambient Healthcare
5
作者 Parul Dubey Pushkar Dubey +2 位作者 Mohammed Zakariah Abdulaziz S.Almazyad Deema Mohammed Alsekait 《Computers, Materials & Continua》 2025年第11期3897-3919,共23页
Psychological distress detection plays a critical role in modern healthcare,especially in ambient environments where continuous monitoring is essential for timely intervention.Advances in sensor technology and artific... Psychological distress detection plays a critical role in modern healthcare,especially in ambient environments where continuous monitoring is essential for timely intervention.Advances in sensor technology and artificial intelligence(AI)have enabled the development of systems capable of mental health monitoring using multimodal data.However,existing models often struggle with contextual adaptation and real-time decision-making in dynamic settings.This paper addresses these challenges by proposing TRANS-HEALTH,a hybrid framework that integrates transformer-based inference with Belief-Desire-Intention(BDI)reasoning for real-time psychological distress detection.The framework utilizes a multimodal dataset containing EEG,GSR,heart rate,and activity data to predict distress while adapting to individual contexts.The methodology combines deep learning for robust pattern recognition and symbolic BDI reasoning to enable adaptive decision-making.The novelty of the approach lies in its seamless integration of transformermodelswith BDI reasoning,providing both high accuracy and contextual relevance in real time.Performance metrics such as accuracy,precision,recall,and F1-score are employed to evaluate the system’s performance.The results show that TRANS-HEALTH outperforms existing models,achieving 96.1% accuracy with 4.78 ms latency and significantly reducing false alerts,with an enhanced ability to engage users,making it suitable for deployment in wearable and remote healthcare environments. 展开更多
关键词 Psychological distress detection transformer architecture BDI reasoning(Belief-Desire-Intention) real-time ambient healthcare multimodal sensor data
在线阅读 下载PDF
Differentially Private Real-Time Streaming Data Publication Based on Sliding Window Under Exponential Decay 被引量:3
6
作者 Lan Sun Chen Ge +2 位作者 Xin Huang Yingjie Wu Yan Gao 《Computers, Materials & Continua》 SCIE EI 2019年第1期61-78,共18页
Continuous response of range query on steaming data provides useful information for many practical applications as well as the risk of privacy disclosure.The existing research on differential privacy streaming data pu... Continuous response of range query on steaming data provides useful information for many practical applications as well as the risk of privacy disclosure.The existing research on differential privacy streaming data publication mostly pay close attention to boosting query accuracy,but pay less attention to query efficiency,and ignore the effect of timeliness on data weight.In this paper,we propose an effective algorithm of differential privacy streaming data publication under exponential decay mode.Firstly,by introducing the Fenwick tree to divide and reorganize data items in the stream,we achieve a constant time complexity for inserting a new item and getting the prefix sum.Meanwhile,we achieve time complicity linear to the number of data item for building a tree.After that,we use the advantage of matrix mechanism to deal with relevant queries and reduce the global sensitivity.In addition,we choose proper diagonal matrix further improve the range query accuracy.Finally,considering about exponential decay,every data item is weighted by the decay factor.By putting the Fenwick tree and matrix optimization together,we present complete algorithm for differentiate private real-time streaming data publication.The experiment is designed to compare the algorithm in this paper with similar algorithms for streaming data release in exponential decay.Experimental results show that the algorithm in this paper effectively improve the query efficiency while ensuring the quality of the query. 展开更多
关键词 Differential privacy streamING data PUBLICATION EXPONENTIAL decay matrix mechanism SLIDING window
在线阅读 下载PDF
Big Data Stream Analytics for Near Real-Time Sentiment Analysis 被引量:1
7
作者 Otto K. M. Cheng Raymond Lau 《Journal of Computer and Communications》 2015年第5期189-195,共7页
In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedente... In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedented opportunities to tap into big data to mine valuable business intelligence. However, traditional business analytics methods may not be able to cope with the flood of big data. The main contribution of this paper is the illustration of the development of a novel big data stream analytics framework named BDSASA that leverages a probabilistic language model to analyze the consumer sentiments embedded in hundreds of millions of online consumer reviews. In particular, an inference model is embedded into the classical language modeling framework to enhance the prediction of consumer sentiments. The practical implication of our research work is that organizations can apply our big data stream analytics framework to analyze consumers’ product preferences, and hence develop more effective marketing and production strategies. 展开更多
关键词 BIG data data stream ANALYTICS SENTIMENT Analysis ONLINE Review
暂未订购
Integrated Real-Time Big Data Stream Sentiment Analysis Service 被引量:1
8
作者 Sun Sunnie Chung Danielle Aring 《Journal of Data Analysis and Information Processing》 2018年第2期46-66,共21页
Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with o... Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with opportunities to discover valuable intelligence from the massive user generated text streams. However, the traditional content analysis frameworks are inefficient to handle the unprecedentedly big volume of unstructured text streams and the complexity of text analysis tasks for the real time opinion analysis on the big data streams. In this paper, we propose a parallel real time sentiment analysis system: Social Media Data Stream Sentiment Analysis Service (SMDSSAS) that performs multiple phases of sentiment analysis of social media text streams effectively in real time with two fully analytic opinion mining models to combat the scale of text data streams and the complexity of sentiment analysis processing on unstructured text streams. We propose two aspect based opinion mining models: Deterministic and Probabilistic sentiment models for a real time sentiment analysis on the user given topic related data streams. Experiments on the social media Twitter stream traffic captured during the pre-election weeks of the 2016 Presidential election for real-time analysis of public opinions toward two presidential candidates showed that the proposed system was able to predict correctly Donald Trump as the winner of the 2016 Presidential election. The cross validation results showed that the proposed sentiment models with the real-time streaming components in our proposed framework delivered effectively the analysis of the opinions on two presidential candidates with average 81% accuracy for the Deterministic model and 80% for the Probabilistic model, which are 1% - 22% improvements from the results of the existing literature. 展开更多
关键词 SENTIMENT ANALYSIS real-time Text ANALYSIS OPINION ANALYSIS BIG data An-alytics
在线阅读 下载PDF
High-SpeedReal-TimeDataAcquisitionSystem Realized by Interleaving/Multiplexing Technique 被引量:1
9
作者 吕洁 莫毅群 罗伟雄 《Journal of Beijing Institute of Technology》 EI CAS 2000年第2期183-188,共6页
The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improv... The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate. 展开更多
关键词 real-time data acquisition interleaving/multiplexing high-speed AD converter
在线阅读 下载PDF
A Real-time Lithological Identification Method based on SMOTE-Tomek and ICSA Optimization 被引量:4
10
作者 DENG Song PAN Haoyu +5 位作者 LI Chaowei YAN Xiaopeng WANG Jiangshuai SHI Lin PEI Chunyu CAI Meng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期518-530,共13页
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ... In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process. 展开更多
关键词 mud logging data real-time lithological identification improved crow search algorithm petroleum geological exploration SMOTE-Tomek
在线阅读 下载PDF
An Efficient Modelling of Oversampling with Optimal Deep Learning Enabled Anomaly Detection in Streaming Data 被引量:2
11
作者 R.Rajakumar S.Sathiya Devi 《China Communications》 SCIE CSCD 2024年第5期249-260,共12页
Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL... Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets. 展开更多
关键词 anomaly detection deep learning hyperparameter optimization OVERSAMPLING SMOTE streaming data
在线阅读 下载PDF
Quality control of marine big data——a case study of real-time observation station data in Qingdao 被引量:8
12
作者 QIAN Chengcheng LIU Aichao +4 位作者 HUANG Rui LIU Qingrong XU Wenkun ZHONG Shan YU Le 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第6期1983-1993,共11页
Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great s... Offshore waters provide resources for human beings,while on the other hand,threaten them because of marine disasters.Ocean stations are part of offshore observation networks,and the quality of their data is of great significance for exploiting and protecting the ocean.We used hourly mean wave height,temperature,and pressure real-time observation data taken in the Xiaomaidao station(in Qingdao,China)from June 1,2017,to May 31,2018,to explore the data quality using eight quality control methods,and to discriminate the most effective method for Xiaomaidao station.After using the eight quality control methods,the percentages of the mean wave height,temperature,and pressure data that passed the tests were 89.6%,88.3%,and 98.6%,respectively.With the marine disaster(wave alarm report)data,the values failed in the test mainly due to the influence of aging observation equipment and missing data transmissions.The mean wave height is often affected by dynamic marine disasters,so the continuity test method is not effective.The correlation test with other related parameters would be more useful for the mean wave height. 展开更多
关键词 quality control real-time STATION data MARINE BIG data Xiaomaidao STATION MARINE DISASTER
在线阅读 下载PDF
Improvement Design for Distributed Real-Time Stream Processing Systems 被引量:4
13
作者 Wei Jiang Liu-Gen Xu +1 位作者 Hai-Bo Hu Yue Ma 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第1期3-12,共10页
In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of ... In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of horizontal scalability and high throughput, which is manly deployed in many areas in order to address the problem of speed mismatch between message producers and consumers. When using Kafka, we need to quickly receive data sent by producers. In addition, we need to send data to consumers quickly. Therefore, the performance of Kafka is of critical importance to the performance of the whole stream processing system. In this paper, we propose the improved design of real-time stream processing systems, and focus on improving the Kafka's data loading process.We use Kafka cat to transfer data from the source to Kafka topic directly, which can reduce the network transmission. We also utilize the memory file system to accelerate the process of data loading, which can address the bottleneck and performance problems caused by disk I/O. Extensive experiments are conducted to evaluate the performance, which show the superiority of our improved design. 展开更多
关键词 Kafka Kafka CAT memory FILE SYSTEM MESSAGE QUEUE real-time stream processing SYSTEM
在线阅读 下载PDF
Variation of spatio-temporal distribution of on-road vehicle emissions based on real-time RFID data 被引量:5
14
作者 Yonghong Liu Wenfeng Huang +3 位作者 Xiaofang Lin Rui Xu Li Li Hui Ding 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第6期151-162,共12页
High-resolution vehicular emissions inventories are important for managing vehicular pollution and improving urban air quality. This study developed a vehicular emission inventory with high spatio-temporal resolution ... High-resolution vehicular emissions inventories are important for managing vehicular pollution and improving urban air quality. This study developed a vehicular emission inventory with high spatio-temporal resolution in the main urban area of Chongqing, based on realtime traffic data from 820 RFID detectors covering 454 roads, and the differences in spatiotemporal emission characteristics between inner and outer districts were analysed. The result showed that the daily vehicular emission intensities of CO, hydrocarbons, PM2.5, PM10,and NO_(x) were 30.24, 3.83, 0.18, 0.20, and 8.65 kg/km per day, respectively, in the study area during 2018. The pollutants emission intensities in inner district were higher than those in outer district. Light passenger cars(LPCs) were the main contributors of all-day CO emissions in the inner and outer districts, from which the contributors of NO_(x) emissions were different. Diesel and natural gas buses were major contributors of daytime NO_(x) emissions in inner districts, accounting for 40.40%, but buses and heavy duty trucks(HDTs) were major contributors in outer districts. At nighttime, due to the lifting of truck restrictions and suspension of buses, HDTs become the main NO_(x) contributor in both inner and outer districts,and its three NO_(x) emission peak hours were found, which are different to the peak hours of total NO_(x) emission by all vehicles. Unlike most other cities, bridges and connecting channels are always emission hotspots due to long-time traffic congestion. This knowledge will help fully understand vehicular emissions characteristics and is useful for policymakers to design precise prevention and control measures. 展开更多
关键词 Spatio-temporal distribution Link-level vehicular emission INVENTORY real-time RFID data HDTs CHONGQING
原文传递
Data network traffic analysis and optimization strategy of real-time power grid dynamic monitoring system for wide-frequency measurements 被引量:4
15
作者 Jinsong Li Hao Liu +2 位作者 Wenzhuo Li Tianshu Bi Mingyang Zhao 《Global Energy Interconnection》 EI CAS CSCD 2022年第2期131-142,共12页
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ... The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests. 展开更多
关键词 Power system data network Wide-frequency information real-time system Traffic analysis Optimization strategy
在线阅读 下载PDF
Real-Time Intelligent Diagnosis of Co-frequency Vibration Faults in Rotating Machinery Based on Lightweight-Convolutional Neural Networks
16
作者 Xin Pan Xiancheng Zhang +1 位作者 Zhinong Jiang Guangfu Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期264-282,共19页
The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the... The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance. 展开更多
关键词 Co-frequency vibration real-time diagnosis LW-CNN data augmentation
在线阅读 下载PDF
Improved Data Stream Clustering Method: Incorporating KD-Tree for Typicality and Eccentricity-Based Approach
17
作者 Dayu Xu Jiaming Lu +1 位作者 Xuyao Zhang Hongtao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2557-2573,共17页
Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims... Data stream clustering is integral to contemporary big data applications.However,addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research.This paper aims to elevate the efficiency and precision of data stream clustering,leveraging the TEDA(Typicality and Eccentricity Data Analysis)algorithm as a foundation,we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm.The original TEDA algorithm,grounded in the concept of“Typicality and Eccentricity Data Analytics”,represents an evolving and recursive method that requires no prior knowledge.While the algorithm autonomously creates and merges clusters as new data arrives,its efficiency is significantly hindered by the need to traverse all existing clusters upon the arrival of further data.This work presents the NS-TEDA(Neighbor Search Based Typicality and Eccentricity Data Analysis)algorithm by incorporating a KD-Tree(K-Dimensional Tree)algorithm integrated with the Scapegoat Tree.Upon arrival,this ensures that new data points interact solely with clusters in very close proximity.This significantly enhances algorithm efficiency while preventing a single data point from joining too many clusters and mitigating the merging of clusters with high overlap to some extent.We apply the NS-TEDA algorithm to several well-known datasets,comparing its performance with other data stream clustering algorithms and the original TEDA algorithm.The results demonstrate that the proposed algorithm achieves higher accuracy,and its runtime exhibits almost linear dependence on the volume of data,making it more suitable for large-scale data stream analysis research. 展开更多
关键词 data stream clustering TEDA KD-TREE scapegoat tree
在线阅读 下载PDF
Real-time prediction of mechanical behaviors of underwater shield tunnel structure using machine learning method based on structural health monitoring data 被引量:3
18
作者 Xuyan Tan Weizhong Chen +2 位作者 Tao Zou Jianping Yang Bowen Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期886-895,共10页
Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of i... Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure. 展开更多
关键词 Shied tunnel Machine learning MONITORING real-time prediction data analysis
在线阅读 下载PDF
Design and FPGA verification of a novel reliable real-time data transfer system 被引量:3
19
作者 Yu-ping LIAN Yan HAN +2 位作者 Ming-xu HUO Jin-long CHEN Yan ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第10期1406-1410,共5页
Considering the increasing use of information technology with established standards, such as TCP/IP and XML in modem industrial automation, we present a high cost performance solution with FPGA (field programmable ga... Considering the increasing use of information technology with established standards, such as TCP/IP and XML in modem industrial automation, we present a high cost performance solution with FPGA (field programmable gate array) implementation of a novel reliable real-time data transfer system based on EPA (Ethemet for plant automation) protocol and IEEE 1588 standard. This combination can provide more predictable and real-time communication between automation equipments and precise synchronization between devices. The designed EPA system has been verified on Xilinx Spartan3 XC3S1500 and it consumed 75% of the total slices. The experimental results show that the novel industrial control system achieves high synchronization precision and provides a 1.59-ps standard deviation between the master device and the slave ones. Such a real-time data transfer system is an excellent candidate for automation equipments which require precise synchronization based on Ethemet at a comparatively low price. 展开更多
关键词 Ethemet for plant automation (EPA) IEEE 1588 Precise synchronization real-time data transfer
在线阅读 下载PDF
A Real-Time TCP Stream Reassembly Mechanism in High-Speed Network 被引量:3
20
作者 熊兵 陈晓苏 陈宁 《Journal of Southwest Jiaotong University(English Edition)》 2009年第3期185-191,共7页
With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network str... With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network stream to perform packet processing at a semantic level above the network layer. This paper presents an efficient TCP stream reassembly mechanism for real-time processing of high-speed network traffic. By analyzing the characteristics of network stream in high-speed network and TCP connection establishment process, several polices for designing the reassembly mechanism are built. Then, the reassembly implementation is elaborated in accordance with the policies. Finally, the reassembly mechanism is compared with the traditional reassembly mechanism by the network traffic captured in a typical gigabit gateway. Experiment results illustrate that the reassembly mechanism is efficient and can satisfy the real-time property requirement of traffic analysis system in high-speed network. 展开更多
关键词 TCP stream reassembly High-speed network real-time property Reassembly policy
在线阅读 下载PDF
上一页 1 2 146 下一页 到第
使用帮助 返回顶部