The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr...The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.展开更多
Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core cros...Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core crosstalk.In this paper,we demonstrate a realtime high-speed SDM transmission system over a field-deployed 7-core MCF cable using commercial 400 Gbit/s backbone optical transport network(OTN)transceivers and a network management system.The transceivers employ a high noise-tolerant quadrature phase shift keying(QPSK)modulation format with a 130 Gbaud rate,enabled by optoelectronic multi-chip module(OE-MCM)packaging.The network management system can effectively manage and monitor the performance of the 7-core SDM OTN system and promptly report failure events through alarms.Our field trial demonstrates the compatibility of uncoupled MCF with high-speed OTN transmission equipment and network management systems,supporting its future deployment in next-generation high-speed terrestrial cable transmission networks.展开更多
Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation...Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance.展开更多
The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nod...The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster.展开更多
Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applic...Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.展开更多
In the face of the large number of people with motor function disabilities,rehabilitation robots have attracted more and more attention.In order to promote the active participation of the user's motion intention i...In the face of the large number of people with motor function disabilities,rehabilitation robots have attracted more and more attention.In order to promote the active participation of the user's motion intention in the assisted rehabilitation process of the robots,it is crucial to establish the human motion prediction model.In this paper,a hybrid prediction model built on long short-term memory(LSTM)neural network using surface electromyography(sEMG)is applied to predict the elbow motion of the users in advance.This model includes two sub-models:a back-propagation neural network and an LSTM network.The former extracts a preliminary prediction of the elbow motion,and the latter corrects this prediction to increase accuracy.The proposed model takes time series data as input,which includes the sEMG signals measured by electrodes and the continuous angles from inertial measurement units.The offline and online tests were carried out to verify the established hybrid model.Finally,average root mean square errors of 3.52°and 4.18°were reached respectively for offline and online tests,and the correlation coefficients for both were above 0.98.展开更多
Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dyn...Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dynamic characteristics,a real-time ship roll prediction scheme is proposed on the basis of a data preprocessing strategy and a novel stochastic trainer-based feedforward neural network.The sliding data window serves as a ship time-varying dynamic observer to enhance model prediction stability.The variational mode decomposition method extracts effective information on ship roll motion and reduces the non-stationary characteristics of the series.The energy entropy method reconstructs the mode components into high-frequency,medium-frequency,and low-frequency series to reduce model complexity.An improved black widow optimization algorithm trainer-based feedforward neural network with enhanced local optimal avoidance predicts the high-frequency component,enabling accurate tracking of abrupt signals.Additionally,the deterministic algorithm trainer-based neural network,characterized by rapid processing speed,predicts the remaining two mode components.Thus,real-time ship roll forecasting can be achieved through the reconstruction of mode component prediction results.The feasibility and effectiveness of the proposed hybrid prediction scheme for ship roll motion are demonstrated through the measured data of a full-scale ship trial.The proposed prediction scheme achieves real-time ship roll prediction with superior prediction accuracy.展开更多
[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectual...[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.展开更多
With the flourishing development of Unmanned Aerial Vehicles(UAVs), the mission tasks of UAVs have become more and more complex. Consequently, a Real-Time Operating System(RTOS) that provides operating environments fo...With the flourishing development of Unmanned Aerial Vehicles(UAVs), the mission tasks of UAVs have become more and more complex. Consequently, a Real-Time Operating System(RTOS) that provides operating environments for various mission services on these UAVs has become crucial, which leads to the necessity of having a deep understanding of an RTOS. In this paper, an empirical study is conducted on FreeRTOS, a commonly used RTOS for UAVs, from a complex network perspective. A total of 85 releases of FreeRTOS, from V2.4.2 to V10.0.0, are modeled as directed networks, in which the nodes represent functions and the edges denote function calls. It is found that the size of the FreeRTOS network has grown almost linearly with the evolution of the versions, while its main core has evolved steadily. In addition, a k-core analysis-based metric is proposed to identify major functionality changes of FreeRTOS during its evolution.The result shows that the identified versions are consistent with the version change logs. Finally,it is found that the clustering coefficient of the Linux OS scheduler is larger than that of the FreeRTOS scheduler. In conclusion, the empirical results provide useful guidance for developers and users of UAV RTOSs.展开更多
With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network str...With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network stream to perform packet processing at a semantic level above the network layer. This paper presents an efficient TCP stream reassembly mechanism for real-time processing of high-speed network traffic. By analyzing the characteristics of network stream in high-speed network and TCP connection establishment process, several polices for designing the reassembly mechanism are built. Then, the reassembly implementation is elaborated in accordance with the policies. Finally, the reassembly mechanism is compared with the traditional reassembly mechanism by the network traffic captured in a typical gigabit gateway. Experiment results illustrate that the reassembly mechanism is efficient and can satisfy the real-time property requirement of traffic analysis system in high-speed network.展开更多
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ...The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.展开更多
To achieve smart and personalized medicine, the development of hydrogel dressings with sensing properties and biotherapeutic properties that can act as a sensor to monitor of human health in real-time while speeding u...To achieve smart and personalized medicine, the development of hydrogel dressings with sensing properties and biotherapeutic properties that can act as a sensor to monitor of human health in real-time while speeding up wound healing face great challenge. In the present study, a biocompatible dual-network composite hydrogel(DNCGel) sensor was obtained via a simple process. The dual network hydrogel is constructed by the interpenetration of a flexible network formed of poly(vinyl alcohol)(PVA) physical cross-linked by repeated freeze-thawing and a rigid network of iron-chelated xanthan gum(XG) impregnated with Fe^(3+) interpenetration. The pure PVA/XG hydrogels were chelated with ferric ions by immersion to improve the gel strength(compressive modulus and tensile modulus can reach up to 0.62 MPa and0.079 MPa, respectively), conductivity(conductivity values ranging from 9 × 10^(-4) S/cm to 1 × 10^(-3)S/cm)and bacterial inhibition properties(up to 98.56%). Subsequently, the effects of the ratio of PVA and XG and the immersion time of Fe^(3+) on the hydrogels were investigated, and DNGel3 was given the most priority on a comprehensive consideration. It was demonstrated that the DNCGel exhibit good biocompatibility in vitro, effectively facilitate wound healing in vivo(up to 97.8% healing rate) under electrical stimulation, and monitors human movement in real time. This work provides a novel avenue to explore multifunctional intelligent hydrogels that hold great promise in biomedical fields such as smart wound dressings and flexible wearable sensors.展开更多
The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage de...The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage depend on the road network structures.For traffic on a parallel network,the performance of groups with and without RTTIS level is improved when the proportion of vehicles using RTTIS is greater than 0 and less than 30%,and a proportion of RTTIS usage higher than 90%would actually deteriorate the performance.For both grid and ring networks,a higher proportion of RTTIS usage always improves the performance of groups with and without RTTIS.For all three network structures,vehicles without RTTIS benefit from some proportion of RTTIS usage in a system.展开更多
In this paper, the model of the online real-time information transmission network, such as wechat, micro-blog, and QQ network, is proposed and built, based on the connection properties between users of the online real...In this paper, the model of the online real-time information transmission network, such as wechat, micro-blog, and QQ network, is proposed and built, based on the connection properties between users of the online real-time information transmission network, and combined with the local world evolving characteristics in complex network, then the statistical topological properties of the network is obtained by numerical simulation. Furthermore, we simulated the process of information transmission on the network, according to the actual characteristics of the online real-time information transmission. Statistics show that the degree distribution presents the characteristics of scale free network, presenting power law distribution, while the average path length, the average clustering coefficient and the average size of the network also has a power-law relationship, moreover, the model parameters has no effect on power-law exponent. The spread of information on the network represents obvious fluctuation scaling, reflecting the characteristics that information transmission fluctuates over time.展开更多
This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA an...This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA and provides a bandwidth of 12. 8 Gbit/s. Using the links, The topologic of multi-DSP system can be changed online to meet the variabilities of the parallel algorithm of image processing. The system can be assembled with utmost tens of boards and maintain the high communication speed. Analysis of the system adaptivity to image processing is testified followed by actual results. Key words real-time image processing - multi-DSP - flexible - scalable - FPGA - links CLC number TP 303 Foundation item: Supported by the National Natural Science Foundation of China (60135020)Biography: MAO Hai-cen(1973-), male, Ph.D. candidate, research direction: artificial intelligence, expert system, pattern recognition and image processing展开更多
Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does no...Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems.展开更多
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable...Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.展开更多
Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network i...Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system.展开更多
文摘The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.
文摘Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core crosstalk.In this paper,we demonstrate a realtime high-speed SDM transmission system over a field-deployed 7-core MCF cable using commercial 400 Gbit/s backbone optical transport network(OTN)transceivers and a network management system.The transceivers employ a high noise-tolerant quadrature phase shift keying(QPSK)modulation format with a 130 Gbaud rate,enabled by optoelectronic multi-chip module(OE-MCM)packaging.The network management system can effectively manage and monitor the performance of the 7-core SDM OTN system and promptly report failure events through alarms.Our field trial demonstrates the compatibility of uncoupled MCF with high-speed OTN transmission equipment and network management systems,supporting its future deployment in next-generation high-speed terrestrial cable transmission networks.
文摘Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance.
基金supported by the National Natural Science Foundation of China(No.62401597)the Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Scientific Research Project of National University of Defense Technology,China(No.ZK22-02)。
文摘The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster.
基金supported by the National Key Research and Development Program of China(No.2023YFF0715103)-financial supportNational Natural Science Foundation of China(Grant Nos.62306237 and 62006191)-financial support+1 种基金Key Research and Development Program of Shaanxi(Nos.2024GX-YBXM-149 and 2021ZDLGY15-04)-financial support,NorthwestUniversity Graduate Innovation Project(No.CX2023194)-financial supportNatural Science Foundation of Shaanxi(No.2023-JC-QN-0750)-financial support.
文摘Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.
基金the National Key Research and Development Program of China(No.2020YFC2007500)the Science and Technology Commission of Shanghai Municipality(No.20DZ2220400)。
文摘In the face of the large number of people with motor function disabilities,rehabilitation robots have attracted more and more attention.In order to promote the active participation of the user's motion intention in the assisted rehabilitation process of the robots,it is crucial to establish the human motion prediction model.In this paper,a hybrid prediction model built on long short-term memory(LSTM)neural network using surface electromyography(sEMG)is applied to predict the elbow motion of the users in advance.This model includes two sub-models:a back-propagation neural network and an LSTM network.The former extracts a preliminary prediction of the elbow motion,and the latter corrects this prediction to increase accuracy.The proposed model takes time series data as input,which includes the sEMG signals measured by electrodes and the continuous angles from inertial measurement units.The offline and online tests were carried out to verify the established hybrid model.Finally,average root mean square errors of 3.52°and 4.18°were reached respectively for offline and online tests,and the correlation coefficients for both were above 0.98.
基金supported by the National Natural Science Foundation of China(Grant Nos.52231014 and 52271361)the Natural Science Foundation of Guangdong Province of China(Grant No.2023A1515010684).
文摘Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dynamic characteristics,a real-time ship roll prediction scheme is proposed on the basis of a data preprocessing strategy and a novel stochastic trainer-based feedforward neural network.The sliding data window serves as a ship time-varying dynamic observer to enhance model prediction stability.The variational mode decomposition method extracts effective information on ship roll motion and reduces the non-stationary characteristics of the series.The energy entropy method reconstructs the mode components into high-frequency,medium-frequency,and low-frequency series to reduce model complexity.An improved black widow optimization algorithm trainer-based feedforward neural network with enhanced local optimal avoidance predicts the high-frequency component,enabling accurate tracking of abrupt signals.Additionally,the deterministic algorithm trainer-based neural network,characterized by rapid processing speed,predicts the remaining two mode components.Thus,real-time ship roll forecasting can be achieved through the reconstruction of mode component prediction results.The feasibility and effectiveness of the proposed hybrid prediction scheme for ship roll motion are demonstrated through the measured data of a full-scale ship trial.The proposed prediction scheme achieves real-time ship roll prediction with superior prediction accuracy.
基金Supported by the Science and Technology Surface Project of Yunnan Province(2010ZC142)the Doctoral Foundation of Dali University(KYBS201015),the Scientific Research Program for College Students of Dali University~~
文摘[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.
基金supported by the National Natural Science Foundation of China (No. 61772055)Equipment Preliminary R&D Project of China (No. 41402020102)
文摘With the flourishing development of Unmanned Aerial Vehicles(UAVs), the mission tasks of UAVs have become more and more complex. Consequently, a Real-Time Operating System(RTOS) that provides operating environments for various mission services on these UAVs has become crucial, which leads to the necessity of having a deep understanding of an RTOS. In this paper, an empirical study is conducted on FreeRTOS, a commonly used RTOS for UAVs, from a complex network perspective. A total of 85 releases of FreeRTOS, from V2.4.2 to V10.0.0, are modeled as directed networks, in which the nodes represent functions and the edges denote function calls. It is found that the size of the FreeRTOS network has grown almost linearly with the evolution of the versions, while its main core has evolved steadily. In addition, a k-core analysis-based metric is proposed to identify major functionality changes of FreeRTOS during its evolution.The result shows that the identified versions are consistent with the version change logs. Finally,it is found that the clustering coefficient of the Linux OS scheduler is larger than that of the FreeRTOS scheduler. In conclusion, the empirical results provide useful guidance for developers and users of UAV RTOSs.
基金Supported by National Naturai Science Foundation of China (61273104, 61021002, 61104097), and Projects of Major Interna-tional (Regional) Joint Research Program National Natural Science Foundation of China (61120106010)
基金National High-Tech Research and Development Program of China (863 Program) (No.2007AA01Z309)
文摘With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network stream to perform packet processing at a semantic level above the network layer. This paper presents an efficient TCP stream reassembly mechanism for real-time processing of high-speed network traffic. By analyzing the characteristics of network stream in high-speed network and TCP connection establishment process, several polices for designing the reassembly mechanism are built. Then, the reassembly implementation is elaborated in accordance with the policies. Finally, the reassembly mechanism is compared with the traditional reassembly mechanism by the network traffic captured in a typical gigabit gateway. Experiment results illustrate that the reassembly mechanism is efficient and can satisfy the real-time property requirement of traffic analysis system in high-speed network.
文摘The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.
基金supported by Physical Chemical Materials Analytical&Testing Center of Shandong University at Weihai,Natural Science Foundation of Shandong Province(No.ZR2022QD057)Open Project Fund for Hubei Key Laboratory of Oral and Maxillofacial Development and Regeneration(No.2021kqhm003)+1 种基金State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing(Yantai,No.AMGM2021F02)。
文摘To achieve smart and personalized medicine, the development of hydrogel dressings with sensing properties and biotherapeutic properties that can act as a sensor to monitor of human health in real-time while speeding up wound healing face great challenge. In the present study, a biocompatible dual-network composite hydrogel(DNCGel) sensor was obtained via a simple process. The dual network hydrogel is constructed by the interpenetration of a flexible network formed of poly(vinyl alcohol)(PVA) physical cross-linked by repeated freeze-thawing and a rigid network of iron-chelated xanthan gum(XG) impregnated with Fe^(3+) interpenetration. The pure PVA/XG hydrogels were chelated with ferric ions by immersion to improve the gel strength(compressive modulus and tensile modulus can reach up to 0.62 MPa and0.079 MPa, respectively), conductivity(conductivity values ranging from 9 × 10^(-4) S/cm to 1 × 10^(-3)S/cm)and bacterial inhibition properties(up to 98.56%). Subsequently, the effects of the ratio of PVA and XG and the immersion time of Fe^(3+) on the hydrogels were investigated, and DNGel3 was given the most priority on a comprehensive consideration. It was demonstrated that the DNCGel exhibit good biocompatibility in vitro, effectively facilitate wound healing in vivo(up to 97.8% healing rate) under electrical stimulation, and monitors human movement in real time. This work provides a novel avenue to explore multifunctional intelligent hydrogels that hold great promise in biomedical fields such as smart wound dressings and flexible wearable sensors.
文摘The effects of real-time traffic information system(RTTIS)on traffic performance under parallel,grid and ring networks were investigated.The simulation results show that the effects of the proportion of RTTIS usage depend on the road network structures.For traffic on a parallel network,the performance of groups with and without RTTIS level is improved when the proportion of vehicles using RTTIS is greater than 0 and less than 30%,and a proportion of RTTIS usage higher than 90%would actually deteriorate the performance.For both grid and ring networks,a higher proportion of RTTIS usage always improves the performance of groups with and without RTTIS.For all three network structures,vehicles without RTTIS benefit from some proportion of RTTIS usage in a system.
文摘In this paper, the model of the online real-time information transmission network, such as wechat, micro-blog, and QQ network, is proposed and built, based on the connection properties between users of the online real-time information transmission network, and combined with the local world evolving characteristics in complex network, then the statistical topological properties of the network is obtained by numerical simulation. Furthermore, we simulated the process of information transmission on the network, according to the actual characteristics of the online real-time information transmission. Statistics show that the degree distribution presents the characteristics of scale free network, presenting power law distribution, while the average path length, the average clustering coefficient and the average size of the network also has a power-law relationship, moreover, the model parameters has no effect on power-law exponent. The spread of information on the network represents obvious fluctuation scaling, reflecting the characteristics that information transmission fluctuates over time.
文摘This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA and provides a bandwidth of 12. 8 Gbit/s. Using the links, The topologic of multi-DSP system can be changed online to meet the variabilities of the parallel algorithm of image processing. The system can be assembled with utmost tens of boards and maintain the high communication speed. Analysis of the system adaptivity to image processing is testified followed by actual results. Key words real-time image processing - multi-DSP - flexible - scalable - FPGA - links CLC number TP 303 Foundation item: Supported by the National Natural Science Foundation of China (60135020)Biography: MAO Hai-cen(1973-), male, Ph.D. candidate, research direction: artificial intelligence, expert system, pattern recognition and image processing
文摘Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems.
文摘Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.
文摘Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system.