This article mainly introduces the multi-layer distributed C/S architecture of system design scheme. Its working principle is the client program runs automatically after the computer starts, and establish communicatio...This article mainly introduces the multi-layer distributed C/S architecture of system design scheme. Its working principle is the client program runs automatically after the computer starts, and establish communication with the application server. The network administrator can monitor and intelligent management of the client computer through the server program, the computer will execute the corresponding operation according to the server to send command instructions. The system realize the main module of the whole system framework, network monitoring data initialization module, network data transmission module, image coding and decoding module, the advantages of system make full use of existing LAN resources, timely delivery and manaRement information.展开更多
Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilize...Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilized as the anode electrode,while graphite rods served as the cathode electrode in assembling the galvanic cell.The FeCo@CF electrode exhibited rapid reactivity with PMS,generating reactive oxygen species that efficiently degrade organic pollutants.The degradation experiments indicate that complete bisphenol A(BPA)degradation was achieved within 10 min under optimal conditions.The real-time electrochemical signal was measured in time during the catalytic reaction,and a linear relationship between BPA concentration and the real-time charge(Q)was confirmed by the equation ln(C0/C)=4.393Q(correlation coefficients,R^(2)=0.998).Furthermore,experiments conducted with aureomycin and tetracycline further validated the effectiveness of the monitoring sensor.First-principles investigation confirmed the superior adsorption energy and improved electron transfer in FeCo@CF.The integration of pollutant degradation with in situ monitoring of catalytic reactions offers promising prospects for expanding the scope of the monitoring of catalytic processes and making significant contributions to environmental purification.展开更多
Combining the background of modern construction engineering site safety management,this article analyzes the real-time monitoring and alarm strategies for site construction safety under the integration of BIM and AI.T...Combining the background of modern construction engineering site safety management,this article analyzes the real-time monitoring and alarm strategies for site construction safety under the integration of BIM and AI.This includes the analysis of BIM and AI technologies and their integration advantages,real-time monitoring and alarm strategies for construction site safety based on BIM and AI integration,as well as the development direction of BIM and AI integration in real-time monitoring and alarm for construction site safety.It is hoped that through this analysis,a scientific reference can be provided for the digital and intelligent management of construction site safety,promoting the digital and intelligent development of its safety management work.展开更多
The Internet of Things technology provides a comprehensive solution for the real-time monitoring of cold chain logistics by integrating sensors,wireless communication,cloud computing,and big data analysis.Based on thi...The Internet of Things technology provides a comprehensive solution for the real-time monitoring of cold chain logistics by integrating sensors,wireless communication,cloud computing,and big data analysis.Based on this,this paper deeply explores the overview and characteristics of the Internet of Things technology,the feasibility analysis of the Internet of Things technology in the cold chain logistics monitoring,the application analysis of the Internet of Things technology in the cold chain logistics real-time monitoring to better improve the management level and operational efficiency of the cold chain logistics,to provide consumers with safer and fresh products.展开更多
As global climate change intensifies,the power industry-a major source of carbon emissions-plays a pivotal role in achieving carbon peaking and neutrality goals through its low-carbon transition.Traditional power pla...As global climate change intensifies,the power industry-a major source of carbon emissions-plays a pivotal role in achieving carbon peaking and neutrality goals through its low-carbon transition.Traditional power plants’carbon management systems can no longer meet the demands of high-precision,real-time monitoring.Smart power plants now offer innovative solutions for carbon emission tracking and intelligent analysis by integrating IoT,big data,and AI technologies.Current research predominantly focuses on optimizing individual processes,lacking systematic exploration of comprehensive dynamic monitoring and intelligent decision-making across the entire workflow.To address this gap,we propose a smart carbon emission monitoring and analysis platform for power plants that integrates IoT sensing,multimodal data analytics,and AI-driven decision-making.The platform establishes a multi-source sensor network to collect emissions data throughout the fuel combustion,auxiliary equipment operation,and waste treatment processes.Combining carbon emission factor analysis with machine learning models enables real-time emission calculations and utilizes long short-term memory networks to predict future emission trends.展开更多
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ...The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.展开更多
To achieve smart and personalized medicine, the development of hydrogel dressings with sensing properties and biotherapeutic properties that can act as a sensor to monitor of human health in real-time while speeding u...To achieve smart and personalized medicine, the development of hydrogel dressings with sensing properties and biotherapeutic properties that can act as a sensor to monitor of human health in real-time while speeding up wound healing face great challenge. In the present study, a biocompatible dual-network composite hydrogel(DNCGel) sensor was obtained via a simple process. The dual network hydrogel is constructed by the interpenetration of a flexible network formed of poly(vinyl alcohol)(PVA) physical cross-linked by repeated freeze-thawing and a rigid network of iron-chelated xanthan gum(XG) impregnated with Fe^(3+) interpenetration. The pure PVA/XG hydrogels were chelated with ferric ions by immersion to improve the gel strength(compressive modulus and tensile modulus can reach up to 0.62 MPa and0.079 MPa, respectively), conductivity(conductivity values ranging from 9 × 10^(-4) S/cm to 1 × 10^(-3)S/cm)and bacterial inhibition properties(up to 98.56%). Subsequently, the effects of the ratio of PVA and XG and the immersion time of Fe^(3+) on the hydrogels were investigated, and DNGel3 was given the most priority on a comprehensive consideration. It was demonstrated that the DNCGel exhibit good biocompatibility in vitro, effectively facilitate wound healing in vivo(up to 97.8% healing rate) under electrical stimulation, and monitors human movement in real time. This work provides a novel avenue to explore multifunctional intelligent hydrogels that hold great promise in biomedical fields such as smart wound dressings and flexible wearable sensors.展开更多
The earthquake real-time monitoring system of the Chinese National Digital Seismic Network has been in operation since"the Ninth Five-year Plan"period,and the stability of the system has been well tested.In ...The earthquake real-time monitoring system of the Chinese National Digital Seismic Network has been in operation since"the Ninth Five-year Plan"period,and the stability of the system has been well tested.In recent years,with the continuous improvement of monitoring technology and increase of public demands,the original real-time monitoring system needs to be upgraded and improved in terms of timeliness,stability,accuracy and ease of operation.Therefore,by accessing a total of more than 1,000 seismic stations,reducing the seismic trigger threshold of the monitoring system,eliminating the false trigger stations and optimizing the seismic waveform display interface,the current earthquake monitoring demands can be satisfied on the basis of ensuring the stable operation of the system.展开更多
In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehen...In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehensive,accurate,continuous,and reliable real-time temperature monitoring for turbogenerators.Additionally,it has demonstrated satisfactory results in a real-time monitoring test of the rotor temperature of various famous large-scale turbogenerators and giant nuclear power half-speed turbogenerators designed and manufactured in China.The development and application of this wireless temperature measurement system would aid in improving the intelligent operation quality,safety,and stability of China’s large turbine generators and even the entire power system.展开更多
The energy consumption of the information and communication technology sector has become a significant portion of the total global energy consumption, warranting research efforts to attempt to reduce it. The pre-requi...The energy consumption of the information and communication technology sector has become a significant portion of the total global energy consumption, warranting research efforts to attempt to reduce it. The pre-requisite for effectual energy management is the availability of the current power consumption values from network devices. Previous works have attempted to estimate and model the consumption values or have measured it using intrusive approaches such as using an in-line power meter. Recent trends suggest that information models are being increasingly used in all aspects of network management. This paper presents a framework developed for enabling the collection of real-time power consumption information from the next generation of networking hardware non-intrusively by employing information models. The experiment results indicate that it is feasible to gather power consumption data using standardized IETF information models, or non-standard customized information models, or through abstracting and exposing the information in a uniform format when no support for the required information models exists. Functional validation of the proposed framework is performed and the results from this research could be leveraged to make energy-efficient network management decisions.展开更多
The monitoring of soil moisture content in paddy field is one of important parts and contents of regional soil moisture monitoring. But a good monitoring scheme hasn’t been established. A real-time monitoring scheme ...The monitoring of soil moisture content in paddy field is one of important parts and contents of regional soil moisture monitoring. But a good monitoring scheme hasn’t been established. A real-time monitoring scheme of soil moisture content in paddy field was put forward from two key links of soil moisture content monitoring and field water-layer monitoring. This scheme could meet the alternative monitoring requirements of soil moisture content in water layer and none-water layer. It had a good maneuverability and could provide references for practical work.展开更多
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we...Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.展开更多
With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, ...With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases.展开更多
The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System(ICPS),enhancing intelligence and autonomy.However,this transition also e...The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System(ICPS),enhancing intelligence and autonomy.However,this transition also expands the attack surface,introducing critical security vulnerabilities.To address these challenges,this article proposes a hybrid intrusion detection scheme for securing ICPSs that combines system state anomaly and network traffic anomaly detection.Specifically,an improved variation-Bayesian-based noise covariance-adaptive nonlinear Kalman filtering(IVB-NCA-NLKF)method is developed to model nonlinear system dynamics,enabling optimal state estimation in multi-sensor ICPS environments.Intrusions within the physical sensing system are identified by analyzing residual discrepancies between predicted and observed system states.Simultaneously,an adaptive network traffic anomaly detection mechanism is introduced,leveraging learned traffic patterns to detect node-and network-level anomalies through pattern matching.Extensive experiments on a simulated network control system demonstrate that the proposed framework achieves higher detection accuracy(92.14%)with a reduced false alarm rate(0.81%).Moreover,it not only detects known attacks and vulnerabilities but also uncovers stealthy attacks that induce system state deviations,providing a robust and comprehensive security solution for the safety protection of ICPS.展开更多
Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core cros...Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core crosstalk.In this paper,we demonstrate a realtime high-speed SDM transmission system over a field-deployed 7-core MCF cable using commercial 400 Gbit/s backbone optical transport network(OTN)transceivers and a network management system.The transceivers employ a high noise-tolerant quadrature phase shift keying(QPSK)modulation format with a 130 Gbaud rate,enabled by optoelectronic multi-chip module(OE-MCM)packaging.The network management system can effectively manage and monitor the performance of the 7-core SDM OTN system and promptly report failure events through alarms.Our field trial demonstrates the compatibility of uncoupled MCF with high-speed OTN transmission equipment and network management systems,supporting its future deployment in next-generation high-speed terrestrial cable transmission networks.展开更多
Fatigue damage is a primary contributor to the failure of composite structures,underscoring the critical importance of monitoring its progression to ensure structural safety.This paper introduces an innovative approac...Fatigue damage is a primary contributor to the failure of composite structures,underscoring the critical importance of monitoring its progression to ensure structural safety.This paper introduces an innovative approach to fatigue damage monitoring in composite structures,leveraging a hybrid methodology that integrates the Whale Optimization Algorithm(WOA)-Backpropagation(BP)neural network with an ultrasonic guided wave feature selection algorithm.Initially,a network of piezoelectric ceramic sensors is employed to transmit and capture ultrasonic-guided waves,thereby establishing a signal space that correlates with the structural condition.Subsequently,the Relief-F algorithm is applied for signal feature extraction,culminating in the formation of a feature matrix.This matrix is then utilized to train the WOA-BP neural network,which optimizes the fatigue damage identification model globally.The proposed model’s efficacy in quantifying fatigue damage is tested against fatigue test datasets,with its performance benchmarked against the traditional BP neural network algorithm.The findings demonstrate that the WOA-BP neural network model not only surpasses the BP model in predictive accuracy but also exhibits enhanced global search capabilities.The effect of different sensor-receiver path signals on the model damage recognition results is also discussed.The results of the discussion found that the path directly through the damaged area is more accurate in modeling damage recognition compared to the path signals away from the damaged area.Consequently,the proposed monitoring method in the fatigue test dataset is adept at accurately tracking and recognizing the progression of fatigue damage.展开更多
Zn vapour is easily generated on the surface by fusion welding galvanized steel sheet,resulting in the formation of defects.Rapidly developing computer vision sensing technology collects weld images in the welding pro...Zn vapour is easily generated on the surface by fusion welding galvanized steel sheet,resulting in the formation of defects.Rapidly developing computer vision sensing technology collects weld images in the welding process,then obtains laser fringe information through digital image processing,identifies welding defects,and finally realizes online control of weld defects.The performance of a convolutional neural network is related to its structure and the quality of the input image.The acquired original images are labeled with LabelMe,and repeated attempts are made to determine the appropriate filtering and edge detection image preprocessing methods.Two-stage convolutional neural networks with different structures are built on the Tensorflow deep learning framework,different thresholds of intersection over union are set,and deep learning methods are used to evaluate the collected original images and the preprocessed images separately.Compared with the test results,the comprehensive performance of the improved feature pyramid networks algorithm based on the basic network VGG16 is lower than that of the basic network Resnet101.Edge detection of the image will significantly improve the accuracy of the model.Adding blur will reduce the accuracy of the model slightly;however,the overall performance of the improved algorithm is still relatively good,which proves the stability of the algorithm.The self-developed software inspection system can be used for image preprocessing and defect recognition,which can be used to record the number and location of typical defects in continuous welds.展开更多
Lost acceleration response reconstruction is crucial for assessing structural conditions in structural health monitoring(SHM).However,traditional methods struggle to address the reconstruction of acceleration response...Lost acceleration response reconstruction is crucial for assessing structural conditions in structural health monitoring(SHM).However,traditional methods struggle to address the reconstruction of acceleration responses with complex features,resulting in a lower reconstruction accuracy.This paper addresses this challenge by leveraging the advanced feature extraction and learning capabilities of fully convolutional networks(FCN)to achieve precise reconstruction of acceleration responses.In the designed network architecture,the incorporation of skip connections preserves low-level details of the network,greatly facilitating the flow of information and improving training efficiency and accuracy.Dropout techniques are employed to reduce computational load and enhance feature extraction.The proposed FCN model automatically extracts high-level features from the input data and establishes a nonlinearmapping relationship between the input and output responses.Finally,the accuracy of the FCN for structural response reconstructionwas evaluated using acceleration data from an experimental arch rib and comparedwith several traditional methods.Additionally,this approach was applied to reconstruct actual acceleration responses measured by an SHM system on a long-span bridge.Through parameter analysis,the feasibility and accuracy of aspects such as available response positions,the number of available channels,and multi-channel response reconstruction were explored.The results indicate that this method exhibits high-precision response reconstruction capability in both time and frequency domains.,with performance surpassing that of other networks,confirming its effectiveness in reconstructing responses under various sensor data loss scenarios.展开更多
Passive source imaging can reconstruct body wave reflections similar to those of active sources through seismic interferometry(SI).It has become a low-cost,environmentally friendly alternative to active source seismic...Passive source imaging can reconstruct body wave reflections similar to those of active sources through seismic interferometry(SI).It has become a low-cost,environmentally friendly alternative to active source seismic,showing great potential.However,this method faces many challenges in practical applications,including uneven distribution of underground sources and complex survey environments.These situations seriously affect the reconstruction quality of virtual shot records,resulting in unguaranteed imaging results and greatly limiting passive source seismic exploration applications.In addition,the quality of the reconstructed records is directly related to the time length of the noise records,but in practice it is often difficult to obtain long-term,high-quality noise segments containing body wave events.To solve the above problems,we propose a deep learning method for reconstructing passive source virtual shot records and apply it to passive source time-lapse monitoring.This method combines the UNet network and the BiLSTM(Bidirectional Long Short-Term Memory)network for extracting spatial features and temporal features respectively.It introduces the spatial attention mechanism to establish a hybrid SUNet-BiLSTM-Attention(SBA)network for supervised training.Through pre-training and fine-tuning training,the network can accurately reconstruct passive source virtual shot records directly from short-time noisy segments containing body wave events.The experimental results of theoretical data show that the virtual shot records reconstructed by the network have high resolution and signal to noise ratio(SNR),providing high-quality data for subsequent monitoring and imaging.Finally,to further validate the effectiveness of proposed method,we applied it to field data collected from gas storage in northwest China.The reconstruction results of field data effectively improve the quality of virtual records and obtain more reliable time-lapse imaging monitoring results,which have significant practical value.展开更多
文摘This article mainly introduces the multi-layer distributed C/S architecture of system design scheme. Its working principle is the client program runs automatically after the computer starts, and establish communication with the application server. The network administrator can monitor and intelligent management of the client computer through the server program, the computer will execute the corresponding operation according to the server to send command instructions. The system realize the main module of the whole system framework, network monitoring data initialization module, network data transmission module, image coding and decoding module, the advantages of system make full use of existing LAN resources, timely delivery and manaRement information.
基金supported by the National Natural Science Foundation of China(No.22306076)the Natural Science Foundation of Jiangsu Province(No.BK20230676)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.22KJB610011).
文摘Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilized as the anode electrode,while graphite rods served as the cathode electrode in assembling the galvanic cell.The FeCo@CF electrode exhibited rapid reactivity with PMS,generating reactive oxygen species that efficiently degrade organic pollutants.The degradation experiments indicate that complete bisphenol A(BPA)degradation was achieved within 10 min under optimal conditions.The real-time electrochemical signal was measured in time during the catalytic reaction,and a linear relationship between BPA concentration and the real-time charge(Q)was confirmed by the equation ln(C0/C)=4.393Q(correlation coefficients,R^(2)=0.998).Furthermore,experiments conducted with aureomycin and tetracycline further validated the effectiveness of the monitoring sensor.First-principles investigation confirmed the superior adsorption energy and improved electron transfer in FeCo@CF.The integration of pollutant degradation with in situ monitoring of catalytic reactions offers promising prospects for expanding the scope of the monitoring of catalytic processes and making significant contributions to environmental purification.
基金“Research on AI-Intelligent Management Technology for Construction Safety Based on BIM Technology and Smart Construction Site Scenarios”(Project No.:KJQN202401904)“Research on Intelligent Monitoring System for Construction Quality and Safety Based on BIM and AI Technologies”(Project No.:202412608006)。
文摘Combining the background of modern construction engineering site safety management,this article analyzes the real-time monitoring and alarm strategies for site construction safety under the integration of BIM and AI.This includes the analysis of BIM and AI technologies and their integration advantages,real-time monitoring and alarm strategies for construction site safety based on BIM and AI integration,as well as the development direction of BIM and AI integration in real-time monitoring and alarm for construction site safety.It is hoped that through this analysis,a scientific reference can be provided for the digital and intelligent management of construction site safety,promoting the digital and intelligent development of its safety management work.
文摘The Internet of Things technology provides a comprehensive solution for the real-time monitoring of cold chain logistics by integrating sensors,wireless communication,cloud computing,and big data analysis.Based on this,this paper deeply explores the overview and characteristics of the Internet of Things technology,the feasibility analysis of the Internet of Things technology in the cold chain logistics monitoring,the application analysis of the Internet of Things technology in the cold chain logistics real-time monitoring to better improve the management level and operational efficiency of the cold chain logistics,to provide consumers with safer and fresh products.
文摘As global climate change intensifies,the power industry-a major source of carbon emissions-plays a pivotal role in achieving carbon peaking and neutrality goals through its low-carbon transition.Traditional power plants’carbon management systems can no longer meet the demands of high-precision,real-time monitoring.Smart power plants now offer innovative solutions for carbon emission tracking and intelligent analysis by integrating IoT,big data,and AI technologies.Current research predominantly focuses on optimizing individual processes,lacking systematic exploration of comprehensive dynamic monitoring and intelligent decision-making across the entire workflow.To address this gap,we propose a smart carbon emission monitoring and analysis platform for power plants that integrates IoT sensing,multimodal data analytics,and AI-driven decision-making.The platform establishes a multi-source sensor network to collect emissions data throughout the fuel combustion,auxiliary equipment operation,and waste treatment processes.Combining carbon emission factor analysis with machine learning models enables real-time emission calculations and utilizes long short-term memory networks to predict future emission trends.
文摘The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.
基金supported by Physical Chemical Materials Analytical&Testing Center of Shandong University at Weihai,Natural Science Foundation of Shandong Province(No.ZR2022QD057)Open Project Fund for Hubei Key Laboratory of Oral and Maxillofacial Development and Regeneration(No.2021kqhm003)+1 种基金State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing(Yantai,No.AMGM2021F02)。
文摘To achieve smart and personalized medicine, the development of hydrogel dressings with sensing properties and biotherapeutic properties that can act as a sensor to monitor of human health in real-time while speeding up wound healing face great challenge. In the present study, a biocompatible dual-network composite hydrogel(DNCGel) sensor was obtained via a simple process. The dual network hydrogel is constructed by the interpenetration of a flexible network formed of poly(vinyl alcohol)(PVA) physical cross-linked by repeated freeze-thawing and a rigid network of iron-chelated xanthan gum(XG) impregnated with Fe^(3+) interpenetration. The pure PVA/XG hydrogels were chelated with ferric ions by immersion to improve the gel strength(compressive modulus and tensile modulus can reach up to 0.62 MPa and0.079 MPa, respectively), conductivity(conductivity values ranging from 9 × 10^(-4) S/cm to 1 × 10^(-3)S/cm)and bacterial inhibition properties(up to 98.56%). Subsequently, the effects of the ratio of PVA and XG and the immersion time of Fe^(3+) on the hydrogels were investigated, and DNGel3 was given the most priority on a comprehensive consideration. It was demonstrated that the DNCGel exhibit good biocompatibility in vitro, effectively facilitate wound healing in vivo(up to 97.8% healing rate) under electrical stimulation, and monitors human movement in real time. This work provides a novel avenue to explore multifunctional intelligent hydrogels that hold great promise in biomedical fields such as smart wound dressings and flexible wearable sensors.
基金the China Earthquake Network Center Seismic Network Department Daily Operation and Maintenance Funding Support(1950411001)
文摘The earthquake real-time monitoring system of the Chinese National Digital Seismic Network has been in operation since"the Ninth Five-year Plan"period,and the stability of the system has been well tested.In recent years,with the continuous improvement of monitoring technology and increase of public demands,the original real-time monitoring system needs to be upgraded and improved in terms of timeliness,stability,accuracy and ease of operation.Therefore,by accessing a total of more than 1,000 seismic stations,reducing the seismic trigger threshold of the monitoring system,eliminating the false trigger stations and optimizing the seismic waveform display interface,the current earthquake monitoring demands can be satisfied on the basis of ensuring the stable operation of the system.
基金supported by the National Natura Science Foundation of China (NSFC), No.51607146China National Major Science and Technology Projects 2010ZX06004-013-04-02 and 2012ZX06002-017-02-01+1 种基金Sichuan Science and Technology Program,No.2018GZ0391Sichuan Hydropower Energy and power equipment technology Engineering Research Center, Xihua university, Chengdu 610039, China,No.SDNY2020-001
文摘In this study,a real-time rotor temperature monitoring system for large turbogenerators using SmartMesh IP wireless network communication technology was designed and tested.The system is capable of providing comprehensive,accurate,continuous,and reliable real-time temperature monitoring for turbogenerators.Additionally,it has demonstrated satisfactory results in a real-time monitoring test of the rotor temperature of various famous large-scale turbogenerators and giant nuclear power half-speed turbogenerators designed and manufactured in China.The development and application of this wireless temperature measurement system would aid in improving the intelligent operation quality,safety,and stability of China’s large turbine generators and even the entire power system.
文摘The energy consumption of the information and communication technology sector has become a significant portion of the total global energy consumption, warranting research efforts to attempt to reduce it. The pre-requisite for effectual energy management is the availability of the current power consumption values from network devices. Previous works have attempted to estimate and model the consumption values or have measured it using intrusive approaches such as using an in-line power meter. Recent trends suggest that information models are being increasingly used in all aspects of network management. This paper presents a framework developed for enabling the collection of real-time power consumption information from the next generation of networking hardware non-intrusively by employing information models. The experiment results indicate that it is feasible to gather power consumption data using standardized IETF information models, or non-standard customized information models, or through abstracting and exposing the information in a uniform format when no support for the required information models exists. Functional validation of the proposed framework is performed and the results from this research could be leveraged to make energy-efficient network management decisions.
文摘The monitoring of soil moisture content in paddy field is one of important parts and contents of regional soil moisture monitoring. But a good monitoring scheme hasn’t been established. A real-time monitoring scheme of soil moisture content in paddy field was put forward from two key links of soil moisture content monitoring and field water-layer monitoring. This scheme could meet the alternative monitoring requirements of soil moisture content in water layer and none-water layer. It had a good maneuverability and could provide references for practical work.
基金supported by the National Natural Science Foundation of China(No.51605054).
文摘Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.
基金supported by the National Natural Science Foundation of China(Nos.52373093 and 12072325)the Outstanding Youth Fund of Henan Province(No.242300421062)+1 种基金National Key R&D Program of China(No.2019YFA0706802)the 111 project(No.D18023).
文摘With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases.
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.62371187the Hunan Provincial Natural Science Foundation of China under Grant Nos.2024JJ8309 and 2023JJ50495.
文摘The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System(ICPS),enhancing intelligence and autonomy.However,this transition also expands the attack surface,introducing critical security vulnerabilities.To address these challenges,this article proposes a hybrid intrusion detection scheme for securing ICPSs that combines system state anomaly and network traffic anomaly detection.Specifically,an improved variation-Bayesian-based noise covariance-adaptive nonlinear Kalman filtering(IVB-NCA-NLKF)method is developed to model nonlinear system dynamics,enabling optimal state estimation in multi-sensor ICPS environments.Intrusions within the physical sensing system are identified by analyzing residual discrepancies between predicted and observed system states.Simultaneously,an adaptive network traffic anomaly detection mechanism is introduced,leveraging learned traffic patterns to detect node-and network-level anomalies through pattern matching.Extensive experiments on a simulated network control system demonstrate that the proposed framework achieves higher detection accuracy(92.14%)with a reduced false alarm rate(0.81%).Moreover,it not only detects known attacks and vulnerabilities but also uncovers stealthy attacks that induce system state deviations,providing a robust and comprehensive security solution for the safety protection of ICPS.
文摘Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core crosstalk.In this paper,we demonstrate a realtime high-speed SDM transmission system over a field-deployed 7-core MCF cable using commercial 400 Gbit/s backbone optical transport network(OTN)transceivers and a network management system.The transceivers employ a high noise-tolerant quadrature phase shift keying(QPSK)modulation format with a 130 Gbaud rate,enabled by optoelectronic multi-chip module(OE-MCM)packaging.The network management system can effectively manage and monitor the performance of the 7-core SDM OTN system and promptly report failure events through alarms.Our field trial demonstrates the compatibility of uncoupled MCF with high-speed OTN transmission equipment and network management systems,supporting its future deployment in next-generation high-speed terrestrial cable transmission networks.
基金funded by the Key Program of the National Natural Science Foundation of China(U2341235)Youth Fund for Basic Research Program of Jiangnan University(JUSRP123003)+2 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1237)the National Key R&D Program of China(2018YFA0702800)Key Technologies R&D Program of CNBM(2023SJYL01).
文摘Fatigue damage is a primary contributor to the failure of composite structures,underscoring the critical importance of monitoring its progression to ensure structural safety.This paper introduces an innovative approach to fatigue damage monitoring in composite structures,leveraging a hybrid methodology that integrates the Whale Optimization Algorithm(WOA)-Backpropagation(BP)neural network with an ultrasonic guided wave feature selection algorithm.Initially,a network of piezoelectric ceramic sensors is employed to transmit and capture ultrasonic-guided waves,thereby establishing a signal space that correlates with the structural condition.Subsequently,the Relief-F algorithm is applied for signal feature extraction,culminating in the formation of a feature matrix.This matrix is then utilized to train the WOA-BP neural network,which optimizes the fatigue damage identification model globally.The proposed model’s efficacy in quantifying fatigue damage is tested against fatigue test datasets,with its performance benchmarked against the traditional BP neural network algorithm.The findings demonstrate that the WOA-BP neural network model not only surpasses the BP model in predictive accuracy but also exhibits enhanced global search capabilities.The effect of different sensor-receiver path signals on the model damage recognition results is also discussed.The results of the discussion found that the path directly through the damaged area is more accurate in modeling damage recognition compared to the path signals away from the damaged area.Consequently,the proposed monitoring method in the fatigue test dataset is adept at accurately tracking and recognizing the progression of fatigue damage.
基金the National Natural Science Foundation of China(No.12064027)。
文摘Zn vapour is easily generated on the surface by fusion welding galvanized steel sheet,resulting in the formation of defects.Rapidly developing computer vision sensing technology collects weld images in the welding process,then obtains laser fringe information through digital image processing,identifies welding defects,and finally realizes online control of weld defects.The performance of a convolutional neural network is related to its structure and the quality of the input image.The acquired original images are labeled with LabelMe,and repeated attempts are made to determine the appropriate filtering and edge detection image preprocessing methods.Two-stage convolutional neural networks with different structures are built on the Tensorflow deep learning framework,different thresholds of intersection over union are set,and deep learning methods are used to evaluate the collected original images and the preprocessed images separately.Compared with the test results,the comprehensive performance of the improved feature pyramid networks algorithm based on the basic network VGG16 is lower than that of the basic network Resnet101.Edge detection of the image will significantly improve the accuracy of the model.Adding blur will reduce the accuracy of the model slightly;however,the overall performance of the improved algorithm is still relatively good,which proves the stability of the algorithm.The self-developed software inspection system can be used for image preprocessing and defect recognition,which can be used to record the number and location of typical defects in continuous welds.
基金National Natural Science Foundation of China(Grant Nos.52408314,52278292)Chongqing Outstanding Youth Science Foundation(Grant No.CSTB2023NSCQ-JQX0029)+1 种基金Science and Technology Project of Sichuan Provincial Transportation Department(Grant No.2023-ZL-03)Science and Technology Project of Guizhou Provincial Transportation Department(Grant No.2024-122-018).
文摘Lost acceleration response reconstruction is crucial for assessing structural conditions in structural health monitoring(SHM).However,traditional methods struggle to address the reconstruction of acceleration responses with complex features,resulting in a lower reconstruction accuracy.This paper addresses this challenge by leveraging the advanced feature extraction and learning capabilities of fully convolutional networks(FCN)to achieve precise reconstruction of acceleration responses.In the designed network architecture,the incorporation of skip connections preserves low-level details of the network,greatly facilitating the flow of information and improving training efficiency and accuracy.Dropout techniques are employed to reduce computational load and enhance feature extraction.The proposed FCN model automatically extracts high-level features from the input data and establishes a nonlinearmapping relationship between the input and output responses.Finally,the accuracy of the FCN for structural response reconstructionwas evaluated using acceleration data from an experimental arch rib and comparedwith several traditional methods.Additionally,this approach was applied to reconstruct actual acceleration responses measured by an SHM system on a long-span bridge.Through parameter analysis,the feasibility and accuracy of aspects such as available response positions,the number of available channels,and multi-channel response reconstruction were explored.The results indicate that this method exhibits high-precision response reconstruction capability in both time and frequency domains.,with performance surpassing that of other networks,confirming its effectiveness in reconstructing responses under various sensor data loss scenarios.
基金supported by the CNPC-SWPU Innovation Alliance Technology Cooperation Project(2020CX020000)the Natural Science Foundation of Sichuan Province(24NSFSC0808)the China Scholarship Council(202306440144).
文摘Passive source imaging can reconstruct body wave reflections similar to those of active sources through seismic interferometry(SI).It has become a low-cost,environmentally friendly alternative to active source seismic,showing great potential.However,this method faces many challenges in practical applications,including uneven distribution of underground sources and complex survey environments.These situations seriously affect the reconstruction quality of virtual shot records,resulting in unguaranteed imaging results and greatly limiting passive source seismic exploration applications.In addition,the quality of the reconstructed records is directly related to the time length of the noise records,but in practice it is often difficult to obtain long-term,high-quality noise segments containing body wave events.To solve the above problems,we propose a deep learning method for reconstructing passive source virtual shot records and apply it to passive source time-lapse monitoring.This method combines the UNet network and the BiLSTM(Bidirectional Long Short-Term Memory)network for extracting spatial features and temporal features respectively.It introduces the spatial attention mechanism to establish a hybrid SUNet-BiLSTM-Attention(SBA)network for supervised training.Through pre-training and fine-tuning training,the network can accurately reconstruct passive source virtual shot records directly from short-time noisy segments containing body wave events.The experimental results of theoretical data show that the virtual shot records reconstructed by the network have high resolution and signal to noise ratio(SNR),providing high-quality data for subsequent monitoring and imaging.Finally,to further validate the effectiveness of proposed method,we applied it to field data collected from gas storage in northwest China.The reconstruction results of field data effectively improve the quality of virtual records and obtain more reliable time-lapse imaging monitoring results,which have significant practical value.