The purpose of this study was to find a way to promote the collaboration and interaction of students and bring about the growth of learners through feedback while taking advantage of real-time interactive class via vi...The purpose of this study was to find a way to promote the collaboration and interaction of students and bring about the growth of learners through feedback while taking advantage of real-time interactive class via video conferencing tools.Although real-time interactive class with using video conferencing tools had great advantages,but there were also limitations of active interaction.To this end,real-time interactive tool and cloud-based educational platform were applied to create cases of learner participation classes and analyze the cases.The convergence of real-time interactive class tools and cloud tools has been able to draw students’participation and collaboration in non-face-to-face situations,and it can be seen that it is very helpful in creating learner-centered educational activities based on communication and interaction with students.Through this,the application of the cloud-based educational platform in real-time interactive class could lead students to participate and collaborate even in non-face-to-face situations.展开更多
In view of the limitations of the mathematical method used in the container terminal logistics system, this paper uses Unity3D to establish a computer simulation model for the container automated yard, which dynamical...In view of the limitations of the mathematical method used in the container terminal logistics system, this paper uses Unity3D to establish a computer simulation model for the container automated yard, which dynamically displays the operation process of the container automated yard logistics system in real time. Through the plane four-parameter coordinate conversion method and by taking the Shanghai urban construction coordinate system as the medium, it completes the conversion from the satellite positioning reference ellipsoid coordinates to the three-dimensional virtual scene coordinates. The example results show that the method is reliable and practical, improves the accuracy and efficiency of positioning, and provides a reliable reference basis for the container terminal logistics system.展开更多
In order to provide a simple and efficient approach to perform the real-time interactive motion control of virtual human in virtual maintenance environment(VME),the motion control method of virtual human based on limi...In order to provide a simple and efficient approach to perform the real-time interactive motion control of virtual human in virtual maintenance environment(VME),the motion control method of virtual human based on limited input information is proposed.With the space position tracking system with only one sensor the action sequences and motion models of virtual human,the human motions and hand actions in VME are driven by the sensor data in stages and in real time through the transmission condition control in the process of maintenance operation.And the input data and information is processed based on the method of Kalman filtering and wavelet transforming to improve the control effects.An experimental VME is also established to validate the control efficiency,and the experiment results show that the space motion control of virtual human in VME can be performed based on limited information with proposed control strategy.展开更多
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In...Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.展开更多
The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for he...The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.展开更多
In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operati...In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operations.However,several challenges have emerged within the high-speed railway dispatching and command system,including the heavy workload faced by dispatchers,the difficulty of quantifying subjective expertise,and the need for effective training of professionals.Amid the growing application of artificial intelligence technologies in railway systems,this study leverages Large Language Model(LLM)technology.LLMs bring enhanced intelligence,predictive capabilities,robust memory,and adaptability to diverse real-world scenarios.This study proposes a human-computer interactive intelligent scheduling auxiliary training system built on LLM technology.The system offers capabilities including natural dialogue,knowledge reasoning,and human feedback learning.With broad applicability,the system is suitable for vocational education,guided inquiry,knowledge-based Q&A,and other training scenarios.Validation results demonstrate its effectiveness in auxiliary training,providing substantial support for educators,students,and dispatching personnel in colleges and professional settings.展开更多
Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does no...Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems.展开更多
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P...Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.展开更多
Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained i...Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.展开更多
Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation...Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance.展开更多
Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilize...Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilized as the anode electrode,while graphite rods served as the cathode electrode in assembling the galvanic cell.The FeCo@CF electrode exhibited rapid reactivity with PMS,generating reactive oxygen species that efficiently degrade organic pollutants.The degradation experiments indicate that complete bisphenol A(BPA)degradation was achieved within 10 min under optimal conditions.The real-time electrochemical signal was measured in time during the catalytic reaction,and a linear relationship between BPA concentration and the real-time charge(Q)was confirmed by the equation ln(C0/C)=4.393Q(correlation coefficients,R^(2)=0.998).Furthermore,experiments conducted with aureomycin and tetracycline further validated the effectiveness of the monitoring sensor.First-principles investigation confirmed the superior adsorption energy and improved electron transfer in FeCo@CF.The integration of pollutant degradation with in situ monitoring of catalytic reactions offers promising prospects for expanding the scope of the monitoring of catalytic processes and making significant contributions to environmental purification.展开更多
The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themse...The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.展开更多
Indoor scene semantic segmentation is essential for enabling robots to understand and interact with their environments effectively.However,numerous challenges remain unresolved,particularly in single-robot systems,whi...Indoor scene semantic segmentation is essential for enabling robots to understand and interact with their environments effectively.However,numerous challenges remain unresolved,particularly in single-robot systems,which often struggle with the complexity and variability of indoor scenes.To address these limitations,we introduce a novel multi-robot collaborative framework based on multiplex interactive learning(MPIL)in which each robot specialises in a distinct visual task within a unified multitask architecture.During training,the framework employs task-specific decoders and cross-task feature sharing to enhance collaborative optimisation.At inference time,robots operate independently with optimised models,enabling scalable,asynchronous and efficient deployment in real-world scenarios.Specifically,MPIL employs specially designed modules that integrate RGB and depth data,refine feature representations and facilitate the simultaneous execution of multiple tasks,such as instance segmentation,scene classification and semantic segmentation.By leveraging these modules,distinct agents within multi-robot systems can effectively handle specialised tasks,thereby enhancing the overall system's flexibility and adaptability.This collaborative effort maximises the strengths of each robot,resulting in a more comprehensive understanding of environments.Extensive experiments on two public benchmark datasets demonstrate MPIL's competitive performance compared to state-of-the-art approaches,highlighting the effectiveness and robustness of our multi-robot system in complex indoor environments.展开更多
The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability...The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices.展开更多
In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing perme...In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing permeability and injection-induced seismicity during hot dry rock geothermal extraction.For optimizing injection strategies and improving engineering safety,real-time permeability,deformation,and energy release characteristics of fractured granite samples driven by injected water pressure under different critical sliding conditions were evaluated.The results indicated that:(1)A low injection water pressure induced intermittent small-deformation stick-slip behavior in fractures,and a high injection pressure primarily caused continuous high-speed large-deformation sliding in fractures.The optimal injection water pressure range was defined for enhancing hydraulic shear permeability and preventing large injection-induced earthquakes.(2)Under the same experimental conditions,fracture sliding was deemed as the major factor that enhanced the hydraulic shear-permeability enhancement and the maximum permeability increased by 36.54 and 41.59 times,respectively,in above two slip modes.(3)Based on the real-time transient evolution of water pressure during fracture sliding,the variation coefficients of slip rate,permeability,and water pressure were fitted,and the results were different from those measured under quasi-static conditions.(4)The maximum and minimum shear strength criteria for injection-induced fracture sliding were also determined(μ=0.6665 andμ=0.1645,respectively,μis friction coefficient).Using the 3D(three-dimensional)fracture surface scanning technology,the weakening effect of injection pressure on fracture surface damage characteristics was determined,which provided evidence for the geological markers of fault sliding mode and sliding nature transitions under the fluid influence.展开更多
Aiming at the problem that the traditional SRP-PHAT sound source localization method performs intensive search in a 360-degree space,resulting in high computational complexity and difficulty in meeting real-time requi...Aiming at the problem that the traditional SRP-PHAT sound source localization method performs intensive search in a 360-degree space,resulting in high computational complexity and difficulty in meeting real-time requirements,an innovative high-precision sound source localization method is proposed.This method combines the selective SRP-PHAT algorithm with real-time visual analysis.Its core innovations include using face detection to dynamically determine the scanning angle range to achieve visually guided selective scanning,distinguishing face sound sources from background noise through a sound source classification mechanism,and implementing intelligent background orientation selection to ensure comprehensive monitoring of environmental noise.Experimental results show that the method achieves a positioning accuracy of±5 degrees and a processing speed of more than 10FPS in complex real environments,and its performance is significantly better than the traditional full-angle scanning method.展开更多
In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the fea...In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.展开更多
Tree trunk instance segmentation is crucial for under-canopy unmanned aerial vehicles(UAVs)to autonomously extract standing tree stem attributes.Using cameras as sensors makes these UAVs compact and lightweight,facili...Tree trunk instance segmentation is crucial for under-canopy unmanned aerial vehicles(UAVs)to autonomously extract standing tree stem attributes.Using cameras as sensors makes these UAVs compact and lightweight,facilitating safe and flexible navigation in dense forests.However,their limited onboard computational power makes real-time,image-based tree trunk segmentation challenging,emphasizing the urgent need for lightweight and efficient segmentation models.In this study,we present RT-Trunk,a model specifically designed for real-time tree trunk instance segmentation in complex forest environments.To ensure real-time performance,we selected SparseInst as the base framework.We incorporated ConvNeXt-T as the backbone to enhance feature extraction for tree trunks,thereby improving segmentation accuracy.We further integrate the lightweight convolutional block attention module(CBAM),enabling the model to focus on tree trunk features while suppressing irrelevant information,which leads to additional gains in segmentation accuracy.To enable RT-Trunk to operate effectively under diverse complex forest environments,we constructed a comprehensive dataset for training and testing by combining self-collected data with multiple public datasets covering different locations,seasons,weather conditions,tree species,and levels of forest clutter.Com-pared with the other tree trunk segmentation methods,the RT-Trunk method achieved an average precision of 91.4%and the fastest inference speed of 32.9 frames per second.Overall,the proposed RT-Trunk provides superior trunk segmentation performance that balances speed and accu-racy,making it a promising solution for supporting under-canopy UAVs in the autonomous extraction of standing tree stem attributes.The code for this work is available at https://github.com/NEFU CVRG/RT Trunk.展开更多
Combining the background of modern construction engineering site safety management,this article analyzes the real-time monitoring and alarm strategies for site construction safety under the integration of BIM and AI.T...Combining the background of modern construction engineering site safety management,this article analyzes the real-time monitoring and alarm strategies for site construction safety under the integration of BIM and AI.This includes the analysis of BIM and AI technologies and their integration advantages,real-time monitoring and alarm strategies for construction site safety based on BIM and AI integration,as well as the development direction of BIM and AI integration in real-time monitoring and alarm for construction site safety.It is hoped that through this analysis,a scientific reference can be provided for the digital and intelligent management of construction site safety,promoting the digital and intelligent development of its safety management work.展开更多
文摘The purpose of this study was to find a way to promote the collaboration and interaction of students and bring about the growth of learners through feedback while taking advantage of real-time interactive class via video conferencing tools.Although real-time interactive class with using video conferencing tools had great advantages,but there were also limitations of active interaction.To this end,real-time interactive tool and cloud-based educational platform were applied to create cases of learner participation classes and analyze the cases.The convergence of real-time interactive class tools and cloud tools has been able to draw students’participation and collaboration in non-face-to-face situations,and it can be seen that it is very helpful in creating learner-centered educational activities based on communication and interaction with students.Through this,the application of the cloud-based educational platform in real-time interactive class could lead students to participate and collaborate even in non-face-to-face situations.
文摘In view of the limitations of the mathematical method used in the container terminal logistics system, this paper uses Unity3D to establish a computer simulation model for the container automated yard, which dynamically displays the operation process of the container automated yard logistics system in real time. Through the plane four-parameter coordinate conversion method and by taking the Shanghai urban construction coordinate system as the medium, it completes the conversion from the satellite positioning reference ellipsoid coordinates to the three-dimensional virtual scene coordinates. The example results show that the method is reliable and practical, improves the accuracy and efficiency of positioning, and provides a reliable reference basis for the container terminal logistics system.
文摘In order to provide a simple and efficient approach to perform the real-time interactive motion control of virtual human in virtual maintenance environment(VME),the motion control method of virtual human based on limited input information is proposed.With the space position tracking system with only one sensor the action sequences and motion models of virtual human,the human motions and hand actions in VME are driven by the sensor data in stages and in real time through the transmission condition control in the process of maintenance operation.And the input data and information is processed based on the method of Kalman filtering and wavelet transforming to improve the control effects.An experimental VME is also established to validate the control efficiency,and the experiment results show that the space motion control of virtual human in VME can be performed based on limited information with proposed control strategy.
文摘Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.
基金funded by the ICT Division of theMinistry of Posts,Telecommunications,and Information Technology of Bangladesh under Grant Number 56.00.0000.052.33.005.21-7(Tracking No.22FS15306)support from the University of Rajshahi.
文摘The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.
基金the Talent Fund of Beijing Jiaotong University(Grant No.2024XKRC055).
文摘In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operations.However,several challenges have emerged within the high-speed railway dispatching and command system,including the heavy workload faced by dispatchers,the difficulty of quantifying subjective expertise,and the need for effective training of professionals.Amid the growing application of artificial intelligence technologies in railway systems,this study leverages Large Language Model(LLM)technology.LLMs bring enhanced intelligence,predictive capabilities,robust memory,and adaptability to diverse real-world scenarios.This study proposes a human-computer interactive intelligent scheduling auxiliary training system built on LLM technology.The system offers capabilities including natural dialogue,knowledge reasoning,and human feedback learning.With broad applicability,the system is suitable for vocational education,guided inquiry,knowledge-based Q&A,and other training scenarios.Validation results demonstrate its effectiveness in auxiliary training,providing substantial support for educators,students,and dispatching personnel in colleges and professional settings.
文摘Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems.
基金supported by the National Natural Science Foundation of China(No.41473068)supported by China Postdoctoral Science Foundation(No.2022M722667)。
文摘Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.
基金supported by the National Natural Science Foundation of China(62303095)the Natural Science Foundation of Sichuan Province(2023NSFSC0872).
文摘Dear Editor,This letter proposes a novel Nash bargaining solution-based multiobjective model predictive control(MPC)scheme to deal with the interaction force control and the path-following problem of the constrained interactive robot.Considering the elastic interaction force model,a mechanical trade-off always exists between the interaction force and position,which means that neither force nor path following can satisfy their desired demands completely.Based on this consideration,two irreconcilable control specifications,the force object function and the position track object function,are proposed,and a new multi-objective MPC scheme is then designed.
文摘Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance.
基金supported by the National Natural Science Foundation of China(No.22306076)the Natural Science Foundation of Jiangsu Province(No.BK20230676)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.22KJB610011).
文摘Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilized as the anode electrode,while graphite rods served as the cathode electrode in assembling the galvanic cell.The FeCo@CF electrode exhibited rapid reactivity with PMS,generating reactive oxygen species that efficiently degrade organic pollutants.The degradation experiments indicate that complete bisphenol A(BPA)degradation was achieved within 10 min under optimal conditions.The real-time electrochemical signal was measured in time during the catalytic reaction,and a linear relationship between BPA concentration and the real-time charge(Q)was confirmed by the equation ln(C0/C)=4.393Q(correlation coefficients,R^(2)=0.998).Furthermore,experiments conducted with aureomycin and tetracycline further validated the effectiveness of the monitoring sensor.First-principles investigation confirmed the superior adsorption energy and improved electron transfer in FeCo@CF.The integration of pollutant degradation with in situ monitoring of catalytic reactions offers promising prospects for expanding the scope of the monitoring of catalytic processes and making significant contributions to environmental purification.
文摘The multi-dimensional interactive teaching model significantly enhances the effectiveness of college English instruction by emphasizing dynamic engagement between teachers and students,as well as among students themselves.This paper explores practical strategies for implementing this model,focusing on four key aspects:deepening teachers’understanding of the model through continuous learning,innovating interactive methods such as questioning techniques and practical activities,leveraging modern technology to integrate resources and track learning progress,and establishing a communication platform that centers on student participation.By adopting these approaches,the model fosters a student-centered classroom environment,improves comprehensive English application skills,and optimizes overall teaching quality.
基金supported by the National Natural Science Foundation of China under Grant 62373009.
文摘Indoor scene semantic segmentation is essential for enabling robots to understand and interact with their environments effectively.However,numerous challenges remain unresolved,particularly in single-robot systems,which often struggle with the complexity and variability of indoor scenes.To address these limitations,we introduce a novel multi-robot collaborative framework based on multiplex interactive learning(MPIL)in which each robot specialises in a distinct visual task within a unified multitask architecture.During training,the framework employs task-specific decoders and cross-task feature sharing to enhance collaborative optimisation.At inference time,robots operate independently with optimised models,enabling scalable,asynchronous and efficient deployment in real-world scenarios.Specifically,MPIL employs specially designed modules that integrate RGB and depth data,refine feature representations and facilitate the simultaneous execution of multiple tasks,such as instance segmentation,scene classification and semantic segmentation.By leveraging these modules,distinct agents within multi-robot systems can effectively handle specialised tasks,thereby enhancing the overall system's flexibility and adaptability.This collaborative effort maximises the strengths of each robot,resulting in a more comprehensive understanding of environments.Extensive experiments on two public benchmark datasets demonstrate MPIL's competitive performance compared to state-of-the-art approaches,highlighting the effectiveness and robustness of our multi-robot system in complex indoor environments.
基金funded by the Ongoing Research Funding Program(ORF-2025-890)King Saud University,Riyadh,Saudi Arabia and was supported by the Competitive Research Fund of theUniversity of Aizu,Japan.
文摘The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices.
基金supported by the National Natural Science Foundation of China (Grant No.52122405)Science and Technology Major Project of Shanxi Province,China (Grant No.202101060301024)Science and Technology Major Project of Xizang Autonomous Region,China (Grant No.XZ202201ZD0004G0204).
文摘In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing permeability and injection-induced seismicity during hot dry rock geothermal extraction.For optimizing injection strategies and improving engineering safety,real-time permeability,deformation,and energy release characteristics of fractured granite samples driven by injected water pressure under different critical sliding conditions were evaluated.The results indicated that:(1)A low injection water pressure induced intermittent small-deformation stick-slip behavior in fractures,and a high injection pressure primarily caused continuous high-speed large-deformation sliding in fractures.The optimal injection water pressure range was defined for enhancing hydraulic shear permeability and preventing large injection-induced earthquakes.(2)Under the same experimental conditions,fracture sliding was deemed as the major factor that enhanced the hydraulic shear-permeability enhancement and the maximum permeability increased by 36.54 and 41.59 times,respectively,in above two slip modes.(3)Based on the real-time transient evolution of water pressure during fracture sliding,the variation coefficients of slip rate,permeability,and water pressure were fitted,and the results were different from those measured under quasi-static conditions.(4)The maximum and minimum shear strength criteria for injection-induced fracture sliding were also determined(μ=0.6665 andμ=0.1645,respectively,μis friction coefficient).Using the 3D(three-dimensional)fracture surface scanning technology,the weakening effect of injection pressure on fracture surface damage characteristics was determined,which provided evidence for the geological markers of fault sliding mode and sliding nature transitions under the fluid influence.
基金the research result of the 2024 Guangxi Higher Education Undergraduate Teaching Reform Project“OBE-Guided,Digitally Empowered‘Hadoop Big Data Development Technology’Course Ideological and Political Construction Innovation Exploration and Practice”(Project No.:2024JGA396).
文摘Aiming at the problem that the traditional SRP-PHAT sound source localization method performs intensive search in a 360-degree space,resulting in high computational complexity and difficulty in meeting real-time requirements,an innovative high-precision sound source localization method is proposed.This method combines the selective SRP-PHAT algorithm with real-time visual analysis.Its core innovations include using face detection to dynamically determine the scanning angle range to achieve visually guided selective scanning,distinguishing face sound sources from background noise through a sound source classification mechanism,and implementing intelligent background orientation selection to ensure comprehensive monitoring of environmental noise.Experimental results show that the method achieves a positioning accuracy of±5 degrees and a processing speed of more than 10FPS in complex real environments,and its performance is significantly better than the traditional full-angle scanning method.
基金the financial support of the Natural Science Foundation of Hubei Province,China (Grant No.2022CFB770)。
文摘In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.
基金supported in part by the National Natural Science Foundation of China(No.31470714 and 61701105).
文摘Tree trunk instance segmentation is crucial for under-canopy unmanned aerial vehicles(UAVs)to autonomously extract standing tree stem attributes.Using cameras as sensors makes these UAVs compact and lightweight,facilitating safe and flexible navigation in dense forests.However,their limited onboard computational power makes real-time,image-based tree trunk segmentation challenging,emphasizing the urgent need for lightweight and efficient segmentation models.In this study,we present RT-Trunk,a model specifically designed for real-time tree trunk instance segmentation in complex forest environments.To ensure real-time performance,we selected SparseInst as the base framework.We incorporated ConvNeXt-T as the backbone to enhance feature extraction for tree trunks,thereby improving segmentation accuracy.We further integrate the lightweight convolutional block attention module(CBAM),enabling the model to focus on tree trunk features while suppressing irrelevant information,which leads to additional gains in segmentation accuracy.To enable RT-Trunk to operate effectively under diverse complex forest environments,we constructed a comprehensive dataset for training and testing by combining self-collected data with multiple public datasets covering different locations,seasons,weather conditions,tree species,and levels of forest clutter.Com-pared with the other tree trunk segmentation methods,the RT-Trunk method achieved an average precision of 91.4%and the fastest inference speed of 32.9 frames per second.Overall,the proposed RT-Trunk provides superior trunk segmentation performance that balances speed and accu-racy,making it a promising solution for supporting under-canopy UAVs in the autonomous extraction of standing tree stem attributes.The code for this work is available at https://github.com/NEFU CVRG/RT Trunk.
基金“Research on AI-Intelligent Management Technology for Construction Safety Based on BIM Technology and Smart Construction Site Scenarios”(Project No.:KJQN202401904)“Research on Intelligent Monitoring System for Construction Quality and Safety Based on BIM and AI Technologies”(Project No.:202412608006)。
文摘Combining the background of modern construction engineering site safety management,this article analyzes the real-time monitoring and alarm strategies for site construction safety under the integration of BIM and AI.This includes the analysis of BIM and AI technologies and their integration advantages,real-time monitoring and alarm strategies for construction site safety based on BIM and AI integration,as well as the development direction of BIM and AI integration in real-time monitoring and alarm for construction site safety.It is hoped that through this analysis,a scientific reference can be provided for the digital and intelligent management of construction site safety,promoting the digital and intelligent development of its safety management work.