The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliab...The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliability. Based on the analysis of the characteristics of real-time embedded software, the formal method is introduced into the real-time embedded software testing field and the real-time extended finite state machine (RT-EFSM) model is studied firstly. Then, the time zone division method of real-time embedded system is presented and the definition and description methods of time-constrained transition equivalence class (timeCTEC) are presented. Furthermore, the approaches of the testing sequence and test case generation are put forward. Finally, the proposed method is applied to a typical avionics real- time embedded software testing practice and the examples of the timeCTEC, testing sequences and test cases are given. With the analysis of the testing result, the application verification shows that the proposed method can effectively describe the real-time embedded software state transition characteristics and real-time requirements and play the advantages of the formal methods in accuracy, effectiveness and the automation supporting. Combined with the testing platform, the real-time, closed loop and automated simulation testing for real-time embedded software can be realized effectively.展开更多
Domestic situation of embedded software practitioners in the industry field is analyzed in this paper,based on which the new requirements for personnel working for embedded software R&D are proposed.Then reform no...Domestic situation of embedded software practitioners in the industry field is analyzed in this paper,based on which the new requirements for personnel working for embedded software R&D are proposed.Then reform notions in higher education system upon cultivating high-class practitioners are presented.展开更多
Modeling technology has been introduced into software testing field.However,how to carry through the testing modeling effectively is still a difficulty.Based on combination of simulation modeling technology and embedd...Modeling technology has been introduced into software testing field.However,how to carry through the testing modeling effectively is still a difficulty.Based on combination of simulation modeling technology and embedded real-time software testing method,the process of simulation testing modeling is studied first.And then,the supporting environment of simulation testing modeling is put forward.Furthermore,an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing(SUT),test case,testing scheduling,and testing system service is brought forward.Finally,the formalized description and execution system of testing models are given,with which we can realize real-time,closed loop,mad automated system testing for embedded real-time software.展开更多
The real-time software system for production process supervision is a inte-gral system,including on-line function subsystem for supervision and off-line auxiliarysubsystem for development and diagnosis.This paper intr...The real-time software system for production process supervision is a inte-gral system,including on-line function subsystem for supervision and off-line auxiliarysubsystem for development and diagnosis.This paper introduces a real-time software sys-tem which has been used in a power station for monitoring a large capacity thermal gener-ating unit.The subsystems,environment,performance and development of the system areexplained,and the common problems about real-time software system are described.展开更多
Software product lines have recently been presented as one of the best promis-ing improvements for the efficient software development. Different research works contribute supportive parameters and negotiations regardi...Software product lines have recently been presented as one of the best promis-ing improvements for the efficient software development. Different research works contribute supportive parameters and negotiations regarding the prob-lems of producing a perfect software scheme. Traditional approaches or recy-cling software are not effective to solve the problems concerning software competence. Since fast developments with software engineering in the past few years, studies show that some approaches are getting extensive attention in both industries and universities. This method is categorized as the software product line improvement;that supports reusing of software in big organizations. Different industries are adopting product lines to enhance efficiency and reduce operational expenses by way of emerging product developments. This research paper is formed to offer in-depth study regarding the software engineering issues such as complexity, conformity, changeability, invisibility, time constraints, budget constraints, and security. We have conducted various research surveys by visiting different professional software development organizations and took feedback from the professional software engineers to analyze the real-time problems that they are facing during the development process of software systems. Survey results proved that complexity is a most occurring issue that most software developers face while developing software applications. Moreover, invisibility is the problem that rarely happens according to the survey.展开更多
The traditional software development model commonly named “waterfall” is unable to cope with the increasing functionality and complexity of modern embedded systems. In addition, it is unable to support the ability f...The traditional software development model commonly named “waterfall” is unable to cope with the increasing functionality and complexity of modern embedded systems. In addition, it is unable to support the ability for businesses to quickly respond to new market opportunities due to changing requirements. As a response, the software development community developed the Agile Methodologies (e.g., extreme Programming, Scrum) which were also adopted by the Embedded System community. However, failures and bad experiences in applying Agile Methodologies to the development of embedded systems have not been reported in the literature. Therefore, this paper contributes a detailed account of our first-time experiences adopting an agile approach in the prototype development of a wireless environment data acquisition system in an academic environment. We successfully applied a subset of the extreme Programming (XP) methodology to our software development using the Python programming language, an experience that demonstrated its benefits in shaping the design of the software and also increasing productivity. We used an incremental development approach for the hardware components and adopted a “cumulative testing” approach. For the overall development process management, however, we concluded that the Promise/Commitment-Based Project Management (PB-PM/CBPM) was better suited. We discovered that software and hardware components of embedded systems are best developed in parallel or near-parallel. We learned that software components that pass automated tests may not survive in the tests against the hardware. Throughout this rapid prototyping effort, factors like team size and our availability as graduate students were major obstacles to fully apply the XP methodology.展开更多
The electronic control unit (ECU) in electrical powered hybrid and fuel cell vehicles is exceedingly complex. Rapid prototyping control is used to reduce development time and eliminate errors during software develop...The electronic control unit (ECU) in electrical powered hybrid and fuel cell vehicles is exceedingly complex. Rapid prototyping control is used to reduce development time and eliminate errors during software development. This paper describes a high-efficiency development method and a flexible tool chain suitable for various applications in automotive engineering. The control algorithm can be deployed directly from a Matlab/Simulink/Stateflow environment into the ECU hardware together with an OSEK real-time operating system (RTOS). The system has been successfully used to develop a 20-kW fuel cell system ECU based on a Motorola PowerPC 555 (MPC555) microcontroller. The total software development time is greatly reduced and the code quality and reliability are greatly enhanced.展开更多
基金supported by the Aviation Science Foundation of China
文摘The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliability. Based on the analysis of the characteristics of real-time embedded software, the formal method is introduced into the real-time embedded software testing field and the real-time extended finite state machine (RT-EFSM) model is studied firstly. Then, the time zone division method of real-time embedded system is presented and the definition and description methods of time-constrained transition equivalence class (timeCTEC) are presented. Furthermore, the approaches of the testing sequence and test case generation are put forward. Finally, the proposed method is applied to a typical avionics real- time embedded software testing practice and the examples of the timeCTEC, testing sequences and test cases are given. With the analysis of the testing result, the application verification shows that the proposed method can effectively describe the real-time embedded software state transition characteristics and real-time requirements and play the advantages of the formal methods in accuracy, effectiveness and the automation supporting. Combined with the testing platform, the real-time, closed loop and automated simulation testing for real-time embedded software can be realized effectively.
文摘Domestic situation of embedded software practitioners in the industry field is analyzed in this paper,based on which the new requirements for personnel working for embedded software R&D are proposed.Then reform notions in higher education system upon cultivating high-class practitioners are presented.
文摘Modeling technology has been introduced into software testing field.However,how to carry through the testing modeling effectively is still a difficulty.Based on combination of simulation modeling technology and embedded real-time software testing method,the process of simulation testing modeling is studied first.And then,the supporting environment of simulation testing modeling is put forward.Furthermore,an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing(SUT),test case,testing scheduling,and testing system service is brought forward.Finally,the formalized description and execution system of testing models are given,with which we can realize real-time,closed loop,mad automated system testing for embedded real-time software.
文摘The real-time software system for production process supervision is a inte-gral system,including on-line function subsystem for supervision and off-line auxiliarysubsystem for development and diagnosis.This paper introduces a real-time software sys-tem which has been used in a power station for monitoring a large capacity thermal gener-ating unit.The subsystems,environment,performance and development of the system areexplained,and the common problems about real-time software system are described.
文摘Software product lines have recently been presented as one of the best promis-ing improvements for the efficient software development. Different research works contribute supportive parameters and negotiations regarding the prob-lems of producing a perfect software scheme. Traditional approaches or recy-cling software are not effective to solve the problems concerning software competence. Since fast developments with software engineering in the past few years, studies show that some approaches are getting extensive attention in both industries and universities. This method is categorized as the software product line improvement;that supports reusing of software in big organizations. Different industries are adopting product lines to enhance efficiency and reduce operational expenses by way of emerging product developments. This research paper is formed to offer in-depth study regarding the software engineering issues such as complexity, conformity, changeability, invisibility, time constraints, budget constraints, and security. We have conducted various research surveys by visiting different professional software development organizations and took feedback from the professional software engineers to analyze the real-time problems that they are facing during the development process of software systems. Survey results proved that complexity is a most occurring issue that most software developers face while developing software applications. Moreover, invisibility is the problem that rarely happens according to the survey.
文摘The traditional software development model commonly named “waterfall” is unable to cope with the increasing functionality and complexity of modern embedded systems. In addition, it is unable to support the ability for businesses to quickly respond to new market opportunities due to changing requirements. As a response, the software development community developed the Agile Methodologies (e.g., extreme Programming, Scrum) which were also adopted by the Embedded System community. However, failures and bad experiences in applying Agile Methodologies to the development of embedded systems have not been reported in the literature. Therefore, this paper contributes a detailed account of our first-time experiences adopting an agile approach in the prototype development of a wireless environment data acquisition system in an academic environment. We successfully applied a subset of the extreme Programming (XP) methodology to our software development using the Python programming language, an experience that demonstrated its benefits in shaping the design of the software and also increasing productivity. We used an incremental development approach for the hardware components and adopted a “cumulative testing” approach. For the overall development process management, however, we concluded that the Promise/Commitment-Based Project Management (PB-PM/CBPM) was better suited. We discovered that software and hardware components of embedded systems are best developed in parallel or near-parallel. We learned that software components that pass automated tests may not survive in the tests against the hardware. Throughout this rapid prototyping effort, factors like team size and our availability as graduate students were major obstacles to fully apply the XP methodology.
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 2003AA)
文摘The electronic control unit (ECU) in electrical powered hybrid and fuel cell vehicles is exceedingly complex. Rapid prototyping control is used to reduce development time and eliminate errors during software development. This paper describes a high-efficiency development method and a flexible tool chain suitable for various applications in automotive engineering. The control algorithm can be deployed directly from a Matlab/Simulink/Stateflow environment into the ECU hardware together with an OSEK real-time operating system (RTOS). The system has been successfully used to develop a 20-kW fuel cell system ECU based on a Motorola PowerPC 555 (MPC555) microcontroller. The total software development time is greatly reduced and the code quality and reliability are greatly enhanced.