Considering the special features of dynamic environment economic dispatch of power systems with high dimensionality,strong coupling,nonlinearity,and non-convexity,a GA-DE multi-objective optimization algorithm based o...Considering the special features of dynamic environment economic dispatch of power systems with high dimensionality,strong coupling,nonlinearity,and non-convexity,a GA-DE multi-objective optimization algorithm based on dual-population pseudo-parallel genetic algorithm-differential evolution is proposed in this paper.The algorithm is based on external elite archive and Pareto dominance,and it adopts the cooperative co-evolution mechanism of differential evolution and genetic algorithm.Average entropy and cubic chaoticmapping initialization strategies are proposed to increase population diversity.In the proposed method,we analyze the distribution of neighboring solutions and apply a new Pareto solution set pruning approach.Unlike traditional models,this work takes the transmission losses as an optimization target and overcomes complex model constraints through a dynamic relaxation constraint approach.To solve the uncertainty caused by integrating wind and photovoltaic energy in power system scheduling,a multi-objective dynamic environment economical dispatch model is set up that takes the system spinning reserve and network highest losses into account.In this paper,the DE algorithm is improved to form the DGAGE algorithm for the objective optimization of the overall power system,The DE algorithm part of DGAGE is combined with the JAYA algorithm to form the system scheduling HDJ algorithm for multiple energy sources connected to the grid.The effectiveness of the proposed method is demonstrated using CEC2022 and CEC2005 test functions,showing robust optimization performance.Validation on a classical 10-unit system confirms the feasibility of the proposed algorithm in addressing power system scheduling issues.This approach provides a novel solution for dynamic power dispatch systems.展开更多
The integration of large-scale-distributed new energy resources has led to heightened source‒load uncertainty.As energy prosumers,microgrids urgently require enhanced real-time regulation capabilities over controllabl...The integration of large-scale-distributed new energy resources has led to heightened source‒load uncertainty.As energy prosumers,microgrids urgently require enhanced real-time regulation capabilities over controllable resources amid uncertain environments,rendering real-time and rapid decision-making a critical issue.This paper proposes a tailored twin delayed deep deterministic policy gradient(TD3)reinforcement learning algorithm that explicitly accounts for source‒load uncertainty.First,following an expert experience-based methodology,Gaussian process regression was implemented using the radial basis function covariance with historical source and load data.The parameters were adaptively adjusted by maximum likelihood estimation to generate the expected curves of demand and wind‒solar power generation,along with their 95%confidence regions,which were treated as representative uncertainty scenarios.Second,the traditional scheduling model was transformed into a deep reinforcement learning(DRL)environment through a Markov process.To minimize the total operational cost of the microgrid,the tailored TD3 algorithm was applied to formulate rapid intraday scheduling decisions.Finally,simulations were conducted using real historical data from an actual region in Zhejiang province,China,to verify the efficacy of the proposed method.The results demonstrate the potential of the algorithm for achieving economic scheduling for microgrids.展开更多
As a key to improve the performance of the interbay automated material handling system (AMHS) in 300 mm semiconductor wafer fabrication system, the real- time overhead hoist transport (OHT) dispatching problem has...As a key to improve the performance of the interbay automated material handling system (AMHS) in 300 mm semiconductor wafer fabrication system, the real- time overhead hoist transport (OHT) dispatching problem has received much attention. This problem is first formu- lated as a special form of assignment problem and it is proved that more than one solution will be obtained by Hungarian algorithm simultaneously. Through proposing and strictly proving two propositions related to the char- acteristics of these solutions, a modified Hungarian algo- rithm is designed to distinguish these solutions. Finally, a new real-time OHT dispatching method is carefully designed by implementing the solution obtained by the modified Hungarian algorithm. The experimental results of discrete event simulations show that, compared with con- ventional Hungarian algorithm dispatching method, the proposed dispatching method that chooses the solution with the maximum variance respectively reduces on average 4 s of the average waiting time and average lead time of wafer lots, and its performance is rather stable in multiple dif- ferent scenarios of the interbay AMHS with different quantities of shortcuts. This research provides an efficient real-time OHT dispatching mechanism for the interbay AMHS with shortcuts and bypasses.展开更多
In order to recover ore as much as possible, a computer-controlled truck real-time dispatching model is conducted under the conditions of Qidashan lron Mine. It can not only acquire the optimization of shovel and truc...In order to recover ore as much as possible, a computer-controlled truck real-time dispatching model is conducted under the conditions of Qidashan lron Mine. It can not only acquire the optimization of shovel and truck operation, but also satisfy requirements of blending ores.The simulation results indicate the effectiveness of the model developed.展开更多
In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue reso...In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.展开更多
This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environment...This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.展开更多
A class of hybrid algorithms of real-time simulation based on evaluation of non-integerstep right-hand side function are presented in this paper. And some results of the convergence and stability of the algorithms are...A class of hybrid algorithms of real-time simulation based on evaluation of non-integerstep right-hand side function are presented in this paper. And some results of the convergence and stability of the algorithms are given. Using the class of algorithms, evaluation for the right-hand side function is needed once in every integration-step. Moreover, comparing with the other methods with the same amount of work, their numerical stability regions are larger and the method errors are smaller, and the numerical experiments show that the algorithms are very effective.展开更多
This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the pre...This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively.展开更多
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and...During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface.展开更多
In this paper a class of real-time parallel modified Rosenbrock methods of numerical simulation is constructed for stiff dynamic systems on a multiprocessor system, and convergence and numerical stability of these met...In this paper a class of real-time parallel modified Rosenbrock methods of numerical simulation is constructed for stiff dynamic systems on a multiprocessor system, and convergence and numerical stability of these methods are discussed. A-stable real-time parallel formula of two-stage third-order and A(α)-stable real-time parallel formula with o ≈ 89.96° of three-stage fourth-order are particularly given. The numerical simulation experiments in parallel environment show that the class of algorithms is efficient and applicable, with greater speedup.展开更多
Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,i...Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.展开更多
In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation...In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation and the convergent order of real-time algorithm is proved.展开更多
Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorith...Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorithm so as to exploit special features of the hardware and avoid associated architecture shortcomings. This paper presents an investigation into the analysis and design mechanisms that will lead to reduction in the execution time in implementing real-time control algorithms. The proposed mechanisms are exemplified by means of one algorithm, which demonstrates their applicability to real-time applications. An active vibration control (AVC) algorithm for a flexible beam system simulated using the finite difference (FD) method is considered to demonstrate the effectiveness of the proposed methods. A comparative performance evaluation of the proposed design mechanisms is presented and discussed through a set of experiments.展开更多
This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of...This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.展开更多
The exponential growth in the scale of power systems has led to a significant increase in the complexity of dispatch problem resolution,particularly within multi-area interconnected power grids.This complexity necessi...The exponential growth in the scale of power systems has led to a significant increase in the complexity of dispatch problem resolution,particularly within multi-area interconnected power grids.This complexity necessitates the employment of distributed solution methodologies,which are not only essential but also highly desirable.In the realm of computational modelling,the multi-area economic dispatch problem(MAED)can be formulated as a linearly constrained separable convex optimization problem.The proximal point algorithm(PPA)is particularly adept at addressing such mathematical constructs effectively.This study introduces parallel(PPPA)and serial(SPPA)variants of the PPA as distributed algorithms,specifically designed for the computational modelling of the MAED.The PPA introduces a quadratic term into the objective function,which,while potentially complicating the iterative updates of the algorithm,serves to dampen oscillations near the optimal solution,thereby enhancing the convergence characteristics.Furthermore,the convergence efficiency of the PPA is significantly influenced by the parameter c.To address this parameter sensitivity,this research draws on trend theory from stock market analysis to propose trend theory-driven distributed PPPA and SPPA,thereby enhancing the robustness of the computational models.The computational models proposed in this study are anticipated to exhibit superior performance in terms of convergence behaviour,stability,and robustness with respect to parameter selection,potentially outperforming existing methods such as the alternating direction method of multipliers(ADMM)and Auxiliary Problem Principle(APP)in the computational simulation of power system dispatch problems.The simulation results demonstrate that the trend theory-based PPPA,SPPA,ADMM and APP exhibit significant robustness to the initial value of parameter c,and show superior convergence characteristics compared to the residual balancing ADMM.展开更多
Deep learning-based intelligent recognition algorithms are increasingly recognized for their potential to address the labor-intensive challenge of manual pest detection.However,their deployment on mobile devices has b...Deep learning-based intelligent recognition algorithms are increasingly recognized for their potential to address the labor-intensive challenge of manual pest detection.However,their deployment on mobile devices has been constrained by high computational demands.Here,we developed GBiDC-PEST,a mobile application that incorporates an improved,lightweight detection algorithm based on the You Only Look Once(YOLO)series singlestage architecture,for real-time detection of four tiny pests(wheat mites,sugarcane aphids,wheat aphids,and rice planthoppers).GBiDC-PEST incorporates several innovative modules,including GhostNet for lightweight feature extraction and architecture optimization by reconstructing the backbone,the bi-directional feature pyramid network(BiFPN)for enhanced multiscale feature fusion,depthwise convolution(DWConv)layers to reduce computational load,and the convolutional block attention module(CBAM)to enable precise feature focus.The newly developed GBiDC-PEST was trained and validated using a multitarget agricultural tiny pest dataset(Tpest-3960)that covered various field environments.GBiDC-PEST(2.8 MB)significantly reduced the model size to only 20%of the original model size,offering a smaller size than the YOLO series(v5-v10),higher detection accuracy than YOLOv10n and v10s,and faster detection speed than v8s,v9c,v10m and v10b.In Android deployment experiments,GBiDCPEST demonstrated enhanced performance in detecting pests against complex backgrounds,and the accuracy for wheat mites and rice planthoppers was improved by 4.5-7.5%compared with the original model.The GBiDC-PEST optimization algorithm and its mobile deployment proposed in this study offer a robust technical framework for the rapid,onsite identification and localization of tiny pests.This advancement provides valuable insights for effective pest monitoring,counting,and control in various agricultural settings.展开更多
The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm...The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm is employed to address the EDP of microgrids in grid-connected mode, while the push-pull algorithm with a fixed step size is introduced for the isolated mode. The proposed algorithm of isolated mode is proven to converge to the optimum when the interaction digraph of microgrids is strongly connected. A unified algorithmic framework is proposed to handle the two modes of operation of microgrids simultaneously, enabling our algorithm to achieve optimal power allocation and maintain the balance between power supply and demand in any mode and any mode switching. Due to the push-pull structure of the algorithm and the use of fixed step size,the proposed algorithm can better handle the case of unbalanced graphs, and the convergence speed is improved. It is documented that when the transmission topology is strongly connected and there is bi-directional communication between the energy router and its neighbors, the proposed algorithm in composite mode achieves economic dispatch even with arbitrary mode switching.Finally, we demonstrate the effectiveness and superiority of our algorithm through numerical simulations.展开更多
Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we re...Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we represent those two goals as the minimization of the average response time and the average task laxity.To achieve this,we propose a genetic-based algorithm with problem-specific and efficient genetic operators.Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency.The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.展开更多
Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportio...Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.展开更多
Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Fi...Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.展开更多
基金funded by the Major Humanities and Social Sciences Research Projects in Zhejiang Higher Education Institutions,grant number 2023QN131National Innovation Training Program Project in China,grant number 202410451009.
文摘Considering the special features of dynamic environment economic dispatch of power systems with high dimensionality,strong coupling,nonlinearity,and non-convexity,a GA-DE multi-objective optimization algorithm based on dual-population pseudo-parallel genetic algorithm-differential evolution is proposed in this paper.The algorithm is based on external elite archive and Pareto dominance,and it adopts the cooperative co-evolution mechanism of differential evolution and genetic algorithm.Average entropy and cubic chaoticmapping initialization strategies are proposed to increase population diversity.In the proposed method,we analyze the distribution of neighboring solutions and apply a new Pareto solution set pruning approach.Unlike traditional models,this work takes the transmission losses as an optimization target and overcomes complex model constraints through a dynamic relaxation constraint approach.To solve the uncertainty caused by integrating wind and photovoltaic energy in power system scheduling,a multi-objective dynamic environment economical dispatch model is set up that takes the system spinning reserve and network highest losses into account.In this paper,the DE algorithm is improved to form the DGAGE algorithm for the objective optimization of the overall power system,The DE algorithm part of DGAGE is combined with the JAYA algorithm to form the system scheduling HDJ algorithm for multiple energy sources connected to the grid.The effectiveness of the proposed method is demonstrated using CEC2022 and CEC2005 test functions,showing robust optimization performance.Validation on a classical 10-unit system confirms the feasibility of the proposed algorithm in addressing power system scheduling issues.This approach provides a novel solution for dynamic power dispatch systems.
基金supported in part by Science and Technology Project of State Grid Corporation of China(No.5400-202319829A-4-1-KJ).
文摘The integration of large-scale-distributed new energy resources has led to heightened source‒load uncertainty.As energy prosumers,microgrids urgently require enhanced real-time regulation capabilities over controllable resources amid uncertain environments,rendering real-time and rapid decision-making a critical issue.This paper proposes a tailored twin delayed deep deterministic policy gradient(TD3)reinforcement learning algorithm that explicitly accounts for source‒load uncertainty.First,following an expert experience-based methodology,Gaussian process regression was implemented using the radial basis function covariance with historical source and load data.The parameters were adaptively adjusted by maximum likelihood estimation to generate the expected curves of demand and wind‒solar power generation,along with their 95%confidence regions,which were treated as representative uncertainty scenarios.Second,the traditional scheduling model was transformed into a deep reinforcement learning(DRL)environment through a Markov process.To minimize the total operational cost of the microgrid,the tailored TD3 algorithm was applied to formulate rapid intraday scheduling decisions.Finally,simulations were conducted using real historical data from an actual region in Zhejiang province,China,to verify the efficacy of the proposed method.The results demonstrate the potential of the algorithm for achieving economic scheduling for microgrids.
基金Supported by National Natural Science Foundation of China(Grant No.51275307)
文摘As a key to improve the performance of the interbay automated material handling system (AMHS) in 300 mm semiconductor wafer fabrication system, the real- time overhead hoist transport (OHT) dispatching problem has received much attention. This problem is first formu- lated as a special form of assignment problem and it is proved that more than one solution will be obtained by Hungarian algorithm simultaneously. Through proposing and strictly proving two propositions related to the char- acteristics of these solutions, a modified Hungarian algo- rithm is designed to distinguish these solutions. Finally, a new real-time OHT dispatching method is carefully designed by implementing the solution obtained by the modified Hungarian algorithm. The experimental results of discrete event simulations show that, compared with con- ventional Hungarian algorithm dispatching method, the proposed dispatching method that chooses the solution with the maximum variance respectively reduces on average 4 s of the average waiting time and average lead time of wafer lots, and its performance is rather stable in multiple dif- ferent scenarios of the interbay AMHS with different quantities of shortcuts. This research provides an efficient real-time OHT dispatching mechanism for the interbay AMHS with shortcuts and bypasses.
文摘In order to recover ore as much as possible, a computer-controlled truck real-time dispatching model is conducted under the conditions of Qidashan lron Mine. It can not only acquire the optimization of shovel and truck operation, but also satisfy requirements of blending ores.The simulation results indicate the effectiveness of the model developed.
基金The National Natural Science Foundation of China (No.50422283)the Science and Technology Key Plan Project of Henan Province (No.072102360060)
文摘In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.
基金supported by the Ministry of Science and Technology of Thailand
文摘This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.
文摘A class of hybrid algorithms of real-time simulation based on evaluation of non-integerstep right-hand side function are presented in this paper. And some results of the convergence and stability of the algorithms are given. Using the class of algorithms, evaluation for the right-hand side function is needed once in every integration-step. Moreover, comparing with the other methods with the same amount of work, their numerical stability regions are larger and the method errors are smaller, and the numerical experiments show that the algorithms are very effective.
文摘This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively.
基金supported by the Innovative Research Groups of National Natural Science Foundation of China(No. 51621092)National Basic Research Program of China ("973" Program, No. 2013CB035904)National Natural Science Foundation of China (No. 51439005)
文摘During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface.
基金This project was supported by the National Natural Science Foundation of China (No. 19871080).
文摘In this paper a class of real-time parallel modified Rosenbrock methods of numerical simulation is constructed for stiff dynamic systems on a multiprocessor system, and convergence and numerical stability of these methods are discussed. A-stable real-time parallel formula of two-stage third-order and A(α)-stable real-time parallel formula with o ≈ 89.96° of three-stage fourth-order are particularly given. The numerical simulation experiments in parallel environment show that the class of algorithms is efficient and applicable, with greater speedup.
基金Supported by Ministerial Level Advanced Research Foundation(65822576)Beijing Municipal Education Commission(KM201310858004,KM201310858001)
文摘Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.
文摘In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation and the convergent order of real-time algorithm is proved.
文摘Although computer architectures incorporate fast processing hardware resources, high performance real-time implementation of a complex control algorithm requires an efficient design and software coding of the algorithm so as to exploit special features of the hardware and avoid associated architecture shortcomings. This paper presents an investigation into the analysis and design mechanisms that will lead to reduction in the execution time in implementing real-time control algorithms. The proposed mechanisms are exemplified by means of one algorithm, which demonstrates their applicability to real-time applications. An active vibration control (AVC) algorithm for a flexible beam system simulated using the finite difference (FD) method is considered to demonstrate the effectiveness of the proposed methods. A comparative performance evaluation of the proposed design mechanisms is presented and discussed through a set of experiments.
基金supported by the Brain Korea 21 Project in 2011 and MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1121-0010)
文摘This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.
基金funded by Guangxi Science and Technology Base and Talent Special Project,grant number GuiKeAD20159077Foundation of Guilin University of Technology,grant number GLUTQD2018001.
文摘The exponential growth in the scale of power systems has led to a significant increase in the complexity of dispatch problem resolution,particularly within multi-area interconnected power grids.This complexity necessitates the employment of distributed solution methodologies,which are not only essential but also highly desirable.In the realm of computational modelling,the multi-area economic dispatch problem(MAED)can be formulated as a linearly constrained separable convex optimization problem.The proximal point algorithm(PPA)is particularly adept at addressing such mathematical constructs effectively.This study introduces parallel(PPPA)and serial(SPPA)variants of the PPA as distributed algorithms,specifically designed for the computational modelling of the MAED.The PPA introduces a quadratic term into the objective function,which,while potentially complicating the iterative updates of the algorithm,serves to dampen oscillations near the optimal solution,thereby enhancing the convergence characteristics.Furthermore,the convergence efficiency of the PPA is significantly influenced by the parameter c.To address this parameter sensitivity,this research draws on trend theory from stock market analysis to propose trend theory-driven distributed PPPA and SPPA,thereby enhancing the robustness of the computational models.The computational models proposed in this study are anticipated to exhibit superior performance in terms of convergence behaviour,stability,and robustness with respect to parameter selection,potentially outperforming existing methods such as the alternating direction method of multipliers(ADMM)and Auxiliary Problem Principle(APP)in the computational simulation of power system dispatch problems.The simulation results demonstrate that the trend theory-based PPPA,SPPA,ADMM and APP exhibit significant robustness to the initial value of parameter c,and show superior convergence characteristics compared to the residual balancing ADMM.
基金support of the Natural Science Foundation of Jiangsu Province,China(BK20240977)the China Scholarship Council(201606850024)+1 种基金the National High Technology Research and Development Program of China(2016YFD0701003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX23_1488)。
文摘Deep learning-based intelligent recognition algorithms are increasingly recognized for their potential to address the labor-intensive challenge of manual pest detection.However,their deployment on mobile devices has been constrained by high computational demands.Here,we developed GBiDC-PEST,a mobile application that incorporates an improved,lightweight detection algorithm based on the You Only Look Once(YOLO)series singlestage architecture,for real-time detection of four tiny pests(wheat mites,sugarcane aphids,wheat aphids,and rice planthoppers).GBiDC-PEST incorporates several innovative modules,including GhostNet for lightweight feature extraction and architecture optimization by reconstructing the backbone,the bi-directional feature pyramid network(BiFPN)for enhanced multiscale feature fusion,depthwise convolution(DWConv)layers to reduce computational load,and the convolutional block attention module(CBAM)to enable precise feature focus.The newly developed GBiDC-PEST was trained and validated using a multitarget agricultural tiny pest dataset(Tpest-3960)that covered various field environments.GBiDC-PEST(2.8 MB)significantly reduced the model size to only 20%of the original model size,offering a smaller size than the YOLO series(v5-v10),higher detection accuracy than YOLOv10n and v10s,and faster detection speed than v8s,v9c,v10m and v10b.In Android deployment experiments,GBiDCPEST demonstrated enhanced performance in detecting pests against complex backgrounds,and the accuracy for wheat mites and rice planthoppers was improved by 4.5-7.5%compared with the original model.The GBiDC-PEST optimization algorithm and its mobile deployment proposed in this study offer a robust technical framework for the rapid,onsite identification and localization of tiny pests.This advancement provides valuable insights for effective pest monitoring,counting,and control in various agricultural settings.
基金supported by the National Natural Science Foundation of China(62103203)
文摘The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm is employed to address the EDP of microgrids in grid-connected mode, while the push-pull algorithm with a fixed step size is introduced for the isolated mode. The proposed algorithm of isolated mode is proven to converge to the optimum when the interaction digraph of microgrids is strongly connected. A unified algorithmic framework is proposed to handle the two modes of operation of microgrids simultaneously, enabling our algorithm to achieve optimal power allocation and maintain the balance between power supply and demand in any mode and any mode switching. Due to the push-pull structure of the algorithm and the use of fixed step size,the proposed algorithm can better handle the case of unbalanced graphs, and the convergence speed is improved. It is documented that when the transmission topology is strongly connected and there is bi-directional communication between the energy router and its neighbors, the proposed algorithm in composite mode achieves economic dispatch even with arbitrary mode switching.Finally, we demonstrate the effectiveness and superiority of our algorithm through numerical simulations.
文摘Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we represent those two goals as the minimization of the average response time and the average task laxity.To achieve this,we propose a genetic-based algorithm with problem-specific and efficient genetic operators.Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency.The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.
基金This work was funded by the National High Technology Research and Development Program ("863" Program) of China under Grant No.2007AA01Z289
文摘Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.
文摘Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.