期刊文献+
共找到24,892篇文章
< 1 2 250 >
每页显示 20 50 100
An automatic docking method for large-scale sections based on real-time pose measuring and assembly deviation control
1
作者 QIAO Zhifeng FU Kang LIU Zhenzhong 《Optoelectronics Letters》 EI 2023年第11期686-692,共7页
Aiming at the problem of poor accuracy consistency of large sections’docking assembly,an automatic docking method using multiple laser trackers to measure the position and posture of the docking sections in real time... Aiming at the problem of poor accuracy consistency of large sections’docking assembly,an automatic docking method using multiple laser trackers to measure the position and posture of the docking sections in real time was proposed.In the solution of the pose of the docking section,real-time pose measurement of the docking section was realized by establishing a global coordinate system and a coordinate fusion method of three or more laser trackers.In the automatic control of the docking process,the real-time communication protocol and the circular negative feedback control strategy of measurement-adjustment-re-measurement are adopted,and the fully-automated docking of large sections is realized.Finally,an experimental verification system was set up,and the docking of the large-scale section reduction models was realized under the requirements of docking accuracy,and the effectiveness of the automatic docking scheme was successfully verified. 展开更多
关键词 COORDINATE deviation system
原文传递
奶牛乳房炎病原体三重Real-time PCR检测方法的建立及应用
2
作者 郭思宇 高雅欣 +5 位作者 纪佳豪 李梓豪 刘文扬 徐博 王三毛 李睿文 《动物医学进展》 北大核心 2025年第12期39-44,共6页
为了建立同时检测奶牛临床型乳房炎中肺炎克雷伯菌(Kp)、产色葡萄球菌(Sc)和牛支原体(Mb),基于Kp ZKIR基因、Sc sodA基因和Mb opp D/F基因设计特异性引物,建立三重实时定量荧光PCR方法(real-time PCR)。试验采用在单一real-time PCR检... 为了建立同时检测奶牛临床型乳房炎中肺炎克雷伯菌(Kp)、产色葡萄球菌(Sc)和牛支原体(Mb),基于Kp ZKIR基因、Sc sodA基因和Mb opp D/F基因设计特异性引物,建立三重实时定量荧光PCR方法(real-time PCR)。试验采用在单一real-time PCR检测方法的基础上对三重real-time PCR检测方法进行优化,并确定退火条件为60℃,肺炎克雷伯菌、产色葡萄球菌以及牛支原体上、下游引物浓度为20μmol/L、荧光探针浓度为10μmol/L。结果表明,该方法对标准品pUC57-ZKIR-Kp、pUC57-sodA-Sc、pUC57-opp D/F-Mb最低检测限分别为1.55×10^(2) copies/μL、1.44×10^(2) copies/μL、1.34×10^(2) copies/μL,灵敏度高;仅对Kp、Sc、Mb这3种病原产生荧光曲线,对其他病原无交叉反应,特异性强;其中组内、组间变异系数均小于2%,重复性良好。利用建立的多重real-time PCR对233份临床样品进行检测,Kp、Sc、Mb检出率分别为73.09%、21.97%、6.72%,与单一real-time PCR方法检测结果一致。说明建立的多重real-time PCR在实际应用中具有灵敏度高、特异性强、重复性良好、检测速度快等优点,可为奶牛临床型乳房炎病原的快速检测、临床诊断和流行病学调查提供有效检测手段。 展开更多
关键词 临床型乳房炎 三重real-time PCR 肺炎克雷伯菌 产色葡萄球菌 牛支原体
在线阅读 下载PDF
Online Optimization to Suppress the Grid-Injected Power Deviation of Wind Farms with Battery-Hydrogen Hybrid Energy Storage Systems 被引量:1
3
作者 Min Liu Qiliang Wu +4 位作者 Zhixin Li Bo Zhao Leiqi Zhang Junhui Li Xingxu Zhu 《Energy Engineering》 2025年第4期1403-1424,共22页
To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy... To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency. 展开更多
关键词 Battery-hydrogen hybrid energy storage systems grid-injected power deviations measurement feedback online optimization energy states
在线阅读 下载PDF
Accuracy allocation method for five-axis machine tools based on geometric error cost sensitivity prioritizing tool direction deviation 被引量:1
4
作者 Xiaojian LIU Ao JIAO +7 位作者 Yang WANG Guodong YI Xiangyu GAO Xiaochen ZHANG Yiming ZHANG Yangjian JI Shuyou ZHANG Jianrong TAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第7期635-651,共17页
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th... Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies. 展开更多
关键词 Five-axis machine tool Accuracy allocation Geometric error modeling Error cost sensitivity Tool direction deviation priority
原文传递
IoT-Based Real-Time Medical-Related Human Activity Recognition Using Skeletons and Multi-Stage Deep Learning for Healthcare 被引量:1
5
作者 Subrata Kumer Paul Abu Saleh Musa Miah +3 位作者 Rakhi Rani Paul Md.EkramulHamid Jungpil Shin Md Abdur Rahim 《Computers, Materials & Continua》 2025年第8期2513-2530,共18页
The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for he... The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs. 展开更多
关键词 real-time human motion recognition(HMR) ENConvLSTM EfficientNet ConvLSTM skeleton data NTU RGB+D 120 dataset MRHA
在线阅读 下载PDF
Large Deviations for Fractional Stochastic Heat Equation with Gaussian Noise Rough in Space
6
作者 WANG Zhi LIU Junfeng 《数学进展》 北大核心 2025年第6期1368-1392,共25页
In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x... In this paper we study the Freidlin-Wentzell's large deviation principle for the following nonlinear fractional stochastic heat equation driven by Gaussian noise∂/∂tu^(ε)=D_(δ)^(α)(t,x)+√εσ(u^(ε)(t,x))W(t,x),(t,x)∈[0,T]×R,where D_(δ)^(α)is a nonlocal fractional differential operator and W is the Gaussian noise which is white in time and behaves as a fractional Brownian motion with Hurst index H satisfying 3-α/4<H<1/2,in the space variable.The weak convergence approach plays an important role. 展开更多
关键词 fractional stochastic heat equation fractional Brownian motion large deviation principle weak convergence
原文传递
Real-Time Communication Driver for MPU Accelerometer Using Predictable Non-Blocking I2C Communication
7
作者 Valentin Stangaciu Mihai-Vladimir Ghimpau Adrian-Gabriel Sztanarec 《Computers, Materials & Continua》 2025年第11期3213-3229,共17页
Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does no... Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems. 展开更多
关键词 real-time accelerometer real-time sensing Internet of Things real-time wireless sensor networks predictable time-bounded accelerometer real-time systems
在线阅读 下载PDF
Diagnostic Method for Load Deviation in Ultra-Supercritical Units Based on MLNaNBDOS
8
作者 Mingzhu Tang YujieHuang +1 位作者 Dongxu Ji Hao Yu 《Frontiers in Heat and Mass Transfer》 2025年第1期95-129,共35页
Load deviations between the output of ultra-supercritical(USC)coal-fired power units and automatic generation control(AGC)commands can adversely affect the safe and stable operation of these units and grid load dispat... Load deviations between the output of ultra-supercritical(USC)coal-fired power units and automatic generation control(AGC)commands can adversely affect the safe and stable operation of these units and grid load dispatching.Data-driven diagnostic methods often fail to account for the imbalanced distribution of data samples,leading to reduced classification performance in diagnosing load deviations in USC units.To address the class imbalance issue in USC load deviation datasets,this study proposes a diagnostic method based on the multi-label natural neighbor boundary oversampling technique(MLNaNBDOS).The method is articulated in three phases.Initially,the traditional binary oversampling strategy is improved by constructing a binary multi-label relationship for the load deviations in coal-fired units.Subsequently,an adaptive adjustment of the oversampling factor is implemented to determine the oversampling weight for each sample class.Finally,the generation of new instances is refined by dynamically evaluating the similarity between new cases and natural neighbors through a random factor,ensuring precise control over the instance generation process.In comparisons with nine benchmark methods across three imbalanced USC load deviation datasets,the proposed method demonstrates superior performance on several key evaluation metrics,including Micro-F1,Micro-G-mean,and Hamming Loss,with average values of 0.8497,0.9150,and 0.1503,respectively.These results substantiate the effectiveness of the proposed method in accurately diagnosing the sources of load deviations in USC units. 展开更多
关键词 Ultra-supercritical units load deviation multi-label learning class imbalance data oversampling
在线阅读 下载PDF
Bilateral Dual-Residual Real-Time Semantic Segmentation Network
9
作者 Shijie Xiang Dong Zhou +1 位作者 Dan Tian Zihao Wang 《Computers, Materials & Continua》 2025年第4期497-515,共19页
Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation... Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance. 展开更多
关键词 real-time residual structure semantic segmentation feature fusion
在线阅读 下载PDF
Real-time electrochemical monitoring sensor for pollutant degradation through galvanic cell system
10
作者 Wu-Xiang Zhang Zi-Han Li +6 位作者 Rong-Sheng Xiao Xin-Gang Wang Hong-Liang Dai Sheng Tang Jian-Zhong Zheng Ming Yang Sai-Sai Yuan 《Rare Metals》 2025年第3期1800-1812,共13页
Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilize... Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilized as the anode electrode,while graphite rods served as the cathode electrode in assembling the galvanic cell.The FeCo@CF electrode exhibited rapid reactivity with PMS,generating reactive oxygen species that efficiently degrade organic pollutants.The degradation experiments indicate that complete bisphenol A(BPA)degradation was achieved within 10 min under optimal conditions.The real-time electrochemical signal was measured in time during the catalytic reaction,and a linear relationship between BPA concentration and the real-time charge(Q)was confirmed by the equation ln(C0/C)=4.393Q(correlation coefficients,R^(2)=0.998).Furthermore,experiments conducted with aureomycin and tetracycline further validated the effectiveness of the monitoring sensor.First-principles investigation confirmed the superior adsorption energy and improved electron transfer in FeCo@CF.The integration of pollutant degradation with in situ monitoring of catalytic reactions offers promising prospects for expanding the scope of the monitoring of catalytic processes and making significant contributions to environmental purification. 展开更多
关键词 Galvanic cell DEGRADATION Catalytic progress real-time monitoring
原文传递
Moonward deviation of the solar wind
11
作者 Chao Wei Hui Zhang +3 位作者 QuanMing Lu JunYi Ren XiaoWei Ma RunZe Li 《Earth and Planetary Physics》 2025年第6期1157-1162,共6页
The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.... The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.This study reveals unexpected,large-scale perturbations in the solar wind upstream of the Moon,using 11 years of data from the OMNI and ARTEMIS(Acceleration,Reconnection,Turbulence and Electrodynamics of Moon's Interaction with the Sun)missions(2012-2023).We find systematic moonward deviations of~tens of km/s in a direction perpendicular to the solar wind(moonward),at altitudes of up to 1000 km,particularly when the interplanetary magnetic field(IMF)lines are oblique to the solar wind(30°<θ<60°)and connected to the lunar dayside.The longer the duration of the interaction,the greater the moonward deviation.These perturbations can be explained by neither solar wind pickup of the reflected ions,nor lunar wake dynamics.Instead,they appear to correlate with magnetic connectivity between the ARTEMIS probes and the lunar surface,suggesting a more complex solar wind interaction than previously thought. 展开更多
关键词 plasma-moon interaction moonward deviation IMF connectivity lunar upstream perturbations
在线阅读 下载PDF
Refractive error and angle of deviation in basic esotropia versus exotropia:a comparative study
12
作者 Babak Masoomian Mohammad Reza Akbari +4 位作者 Arash Mirmohammadsadeghi Sajida Madeeh Fadhl Ali Majdi Kimia Daneshvar Masoud Khorrami-Nejad 《International Journal of Ophthalmology(English edition)》 2025年第12期2339-2344,共6页
AIM:To compare refractive error and angle of deviation in patients with basic esotropia and basic exotropia.METHODS:A retrospective review was conducted on the medical records of patients with basic-type strabismus.De... AIM:To compare refractive error and angle of deviation in patients with basic esotropia and basic exotropia.METHODS:A retrospective review was conducted on the medical records of patients with basic-type strabismus.Demographic data,refractive error,best-corrected distance visual acuity(BCVA),and the horizontal and vertical angle of deviation between basic esotropia and exotropia patients were compared.RESULTS:Among the 7129 patients(mean age 22.98±14.81y)evaluated,44.7%(3185 cases,54.9%male)exhibited basic-type esotropia,while 55.3%(3944 cases,53.9%male)presented with basic-type exotropia.Basic esotropia cases exhibited more hyperopic spherical equivalent measurements in both eyes(right:0.53±3.07 vs left:0.56±2.98 D)than those with basic exotropia(right eye:-0.33±2.84 vs left eye:-0.24±2.68 D,P<0.001 for both eyes).Patients with basic esotropia had significantly greater horizontal deviation angles(near:36.08±18.87 PD and far:35.56±18.75 PD)compared to those with basic exotropia(near:33.75±16.11 PD and far:33.26±15.90 PD,P<0.001).Conversely,patients with basic exotropia had slightly higher vertical deviation angles(near:1.67±5.80 PD and far:1.72±5.89 PD)compared to those with basic esotropia(near:1.12±4.57 PD and far:1.12±4.58 PD,P<0.001).Patients with basic esotropia underwent surgical intervention at younger ages compared to basic exotropia individuals(19.68±15.99 vs 25.66±13.20,P<0.001).CONCLUSION:Basic esotropia patients present more hyperopic refractive errors,better visual acuity,larger horizontal yet smaller vertical ocular misalignments,and tend to undergo strabismus surgery at younger ages relative to basic exotropia cases. 展开更多
关键词 basic esotropia basic exotropia refractive error angle of deviation
原文传递
Moderate Deviations for the Optimal Values of Sample Average Approximation with Adaptive Multiple Importance Sampling
13
作者 Wenjin ZHANG 《Journal of Mathematical Research with Applications》 2025年第2期275-284,共10页
In this paper, we use sample average approximation with adaptive multiple importance sampling to explore moderate deviations for the optimal values. Utilizing the moderate deviation principle for martingale difference... In this paper, we use sample average approximation with adaptive multiple importance sampling to explore moderate deviations for the optimal values. Utilizing the moderate deviation principle for martingale differences and an appropriate Delta method, we establish a moderate deviation principle for the optimal value. Moreover, for a functional form of stochastic programming, we obtain a functional moderate deviation principle for its optimal value. 展开更多
关键词 adaptive multiple importance sampling martingale difference moderate deviation
原文传递
Total Station-Reflective Target Pier Deviation Measurement Error Control
14
作者 Shi’ao Shi Ming Kou +2 位作者 Yuting Cheng Zhenbang Lu Zihao Peng 《Journal of World Architecture》 2025年第2期92-97,共6页
In bridge engineering,monitoring pier offsets is crucial for ensuring both structural safety and construction quality.The total station measurement method using a reflector is widely employed,offering significant adva... In bridge engineering,monitoring pier offsets is crucial for ensuring both structural safety and construction quality.The total station measurement method using a reflector is widely employed,offering significant advantages in specific scenarios.During measurements,errors are influenced by various factors.Initially,misalignment causes the lateral relative error to increase before decreasing,while longitudinal relative errors fluctuate due to instrument characteristics and operational factors.Lateral movements have a more pronounced impact on these errors.Investigating the positioning layout of pier offsets holds substantial importance as it enables precise displacement monitoring,prevents accidents,aids in maintenance planning,provides valuable references for design and construction,and enhances the pier’s resistance to deflection.Controlling and correcting subsequent errors is essential to ensure the overall safety of the bridge structure. 展开更多
关键词 REFLECTOR Total station Pier deviation measuring point Error analysis
在线阅读 下载PDF
Enhancing IoT Resilience at the Edge:A Resource-Efficient Framework for Real-Time Anomaly Detection in Streaming Data
15
作者 Kirubavathi G. Arjun Pulliyasseri +5 位作者 Aswathi Rajesh Amal Ajayan Sultan Alfarhood Mejdl Safran Meshal Alfarhood Jungpil Shin 《Computer Modeling in Engineering & Sciences》 2025年第6期3005-3031,共27页
The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability... The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices. 展开更多
关键词 Anomaly detection streaming data IOT IIoT TMoT real-time LIGHTWEIGHT modeling
在线阅读 下载PDF
Real-time seepage and instability of fractured granite subjected to hydro-shearing under different critical slip states
16
作者 Peng Zhao Zijun Feng +3 位作者 Hanmo Nan Peihua Jin Chunsheng Deng Yubin Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2396-2415,共20页
In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing perme... In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing permeability and injection-induced seismicity during hot dry rock geothermal extraction.For optimizing injection strategies and improving engineering safety,real-time permeability,deformation,and energy release characteristics of fractured granite samples driven by injected water pressure under different critical sliding conditions were evaluated.The results indicated that:(1)A low injection water pressure induced intermittent small-deformation stick-slip behavior in fractures,and a high injection pressure primarily caused continuous high-speed large-deformation sliding in fractures.The optimal injection water pressure range was defined for enhancing hydraulic shear permeability and preventing large injection-induced earthquakes.(2)Under the same experimental conditions,fracture sliding was deemed as the major factor that enhanced the hydraulic shear-permeability enhancement and the maximum permeability increased by 36.54 and 41.59 times,respectively,in above two slip modes.(3)Based on the real-time transient evolution of water pressure during fracture sliding,the variation coefficients of slip rate,permeability,and water pressure were fitted,and the results were different from those measured under quasi-static conditions.(4)The maximum and minimum shear strength criteria for injection-induced fracture sliding were also determined(μ=0.6665 andμ=0.1645,respectively,μis friction coefficient).Using the 3D(three-dimensional)fracture surface scanning technology,the weakening effect of injection pressure on fracture surface damage characteristics was determined,which provided evidence for the geological markers of fault sliding mode and sliding nature transitions under the fluid influence. 展开更多
关键词 Hydro-shearing Reservoir modification Injection-induced seismicity real-time shear-flowing Frictional noise
在线阅读 下载PDF
Real-Time Sound Source Localization Method Based on Selective SRP-PHAT and Vision Fusion
17
作者 Jinde Huang 《Journal of Electronic Research and Application》 2025年第4期235-241,共7页
Aiming at the problem that the traditional SRP-PHAT sound source localization method performs intensive search in a 360-degree space,resulting in high computational complexity and difficulty in meeting real-time requi... Aiming at the problem that the traditional SRP-PHAT sound source localization method performs intensive search in a 360-degree space,resulting in high computational complexity and difficulty in meeting real-time requirements,an innovative high-precision sound source localization method is proposed.This method combines the selective SRP-PHAT algorithm with real-time visual analysis.Its core innovations include using face detection to dynamically determine the scanning angle range to achieve visually guided selective scanning,distinguishing face sound sources from background noise through a sound source classification mechanism,and implementing intelligent background orientation selection to ensure comprehensive monitoring of environmental noise.Experimental results show that the method achieves a positioning accuracy of±5 degrees and a processing speed of more than 10FPS in complex real environments,and its performance is significantly better than the traditional full-angle scanning method. 展开更多
关键词 Sound source localization SRP-PHAT Audio-visual fusion real-time processing Microphone array
在线阅读 下载PDF
Contextual design and real-time verification for agile casting design
18
作者 Dong Xiang Chu-hao Zhou +3 位作者 Xuan-pu Dong Shu-ren Guo Yan-song Ding Hua-tang Cao 《China Foundry》 2025年第2期231-238,共8页
In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the fea... In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market. 展开更多
关键词 agile design context-design casting process design real-time verification smart manufacturing
在线阅读 下载PDF
Real-time instance segmentation of tree trunks from under-canopy images in complex forest environments
19
作者 Chong Mo Wenlong Song +3 位作者 Weigang Li Guanglai Wang Yongkang Li Jianping Huang 《Journal of Forestry Research》 2025年第3期139-151,共13页
Tree trunk instance segmentation is crucial for under-canopy unmanned aerial vehicles(UAVs)to autonomously extract standing tree stem attributes.Using cameras as sensors makes these UAVs compact and lightweight,facili... Tree trunk instance segmentation is crucial for under-canopy unmanned aerial vehicles(UAVs)to autonomously extract standing tree stem attributes.Using cameras as sensors makes these UAVs compact and lightweight,facilitating safe and flexible navigation in dense forests.However,their limited onboard computational power makes real-time,image-based tree trunk segmentation challenging,emphasizing the urgent need for lightweight and efficient segmentation models.In this study,we present RT-Trunk,a model specifically designed for real-time tree trunk instance segmentation in complex forest environments.To ensure real-time performance,we selected SparseInst as the base framework.We incorporated ConvNeXt-T as the backbone to enhance feature extraction for tree trunks,thereby improving segmentation accuracy.We further integrate the lightweight convolutional block attention module(CBAM),enabling the model to focus on tree trunk features while suppressing irrelevant information,which leads to additional gains in segmentation accuracy.To enable RT-Trunk to operate effectively under diverse complex forest environments,we constructed a comprehensive dataset for training and testing by combining self-collected data with multiple public datasets covering different locations,seasons,weather conditions,tree species,and levels of forest clutter.Com-pared with the other tree trunk segmentation methods,the RT-Trunk method achieved an average precision of 91.4%and the fastest inference speed of 32.9 frames per second.Overall,the proposed RT-Trunk provides superior trunk segmentation performance that balances speed and accu-racy,making it a promising solution for supporting under-canopy UAVs in the autonomous extraction of standing tree stem attributes.The code for this work is available at https://github.com/NEFU CVRG/RT Trunk. 展开更多
关键词 Tree trunk detection real-time instance segmentation SparseInst Under-canopy UAVs
在线阅读 下载PDF
Real-time Monitoring and Alarm Strategy for Construction Site Safety Based on the Integration of BIM and AI
20
作者 Ying Peng Huiming Qin +4 位作者 Lianyuan Peng Taolin Luo Baoming Dai SiyanYu Yifei Xu 《Journal of World Architecture》 2025年第3期134-140,共7页
Combining the background of modern construction engineering site safety management,this article analyzes the real-time monitoring and alarm strategies for site construction safety under the integration of BIM and AI.T... Combining the background of modern construction engineering site safety management,this article analyzes the real-time monitoring and alarm strategies for site construction safety under the integration of BIM and AI.This includes the analysis of BIM and AI technologies and their integration advantages,real-time monitoring and alarm strategies for construction site safety based on BIM and AI integration,as well as the development direction of BIM and AI integration in real-time monitoring and alarm for construction site safety.It is hoped that through this analysis,a scientific reference can be provided for the digital and intelligent management of construction site safety,promoting the digital and intelligent development of its safety management work. 展开更多
关键词 BIM technology AI technology Construction safety real-time monitoring Risk warning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部