期刊文献+
共找到11,421篇文章
< 1 2 250 >
每页显示 20 50 100
DDFNet:real-time salient object detection with dual-branch decoding fusion for steel plate surface defects
1
作者 Tao Wang Wang-zhe Du +5 位作者 Xu-wei Li Hua-xin Liu Yuan-ming Liu Xiao-miao Niu Ya-xing Liu Tao Wang 《Journal of Iron and Steel Research International》 2025年第8期2421-2433,共13页
A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decod... A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet. 展开更多
关键词 Steel plate surface defect real-time detection Salient object detection Dual-branch decoder Multi-scale attention fusion Multi-scale residual fusion
原文传递
奶牛乳房炎病原体三重Real-time PCR检测方法的建立及应用
2
作者 郭思宇 高雅欣 +5 位作者 纪佳豪 李梓豪 刘文扬 徐博 王三毛 李睿文 《动物医学进展》 北大核心 2025年第12期39-44,共6页
为了建立同时检测奶牛临床型乳房炎中肺炎克雷伯菌(Kp)、产色葡萄球菌(Sc)和牛支原体(Mb),基于Kp ZKIR基因、Sc sodA基因和Mb opp D/F基因设计特异性引物,建立三重实时定量荧光PCR方法(real-time PCR)。试验采用在单一real-time PCR检... 为了建立同时检测奶牛临床型乳房炎中肺炎克雷伯菌(Kp)、产色葡萄球菌(Sc)和牛支原体(Mb),基于Kp ZKIR基因、Sc sodA基因和Mb opp D/F基因设计特异性引物,建立三重实时定量荧光PCR方法(real-time PCR)。试验采用在单一real-time PCR检测方法的基础上对三重real-time PCR检测方法进行优化,并确定退火条件为60℃,肺炎克雷伯菌、产色葡萄球菌以及牛支原体上、下游引物浓度为20μmol/L、荧光探针浓度为10μmol/L。结果表明,该方法对标准品pUC57-ZKIR-Kp、pUC57-sodA-Sc、pUC57-opp D/F-Mb最低检测限分别为1.55×10^(2) copies/μL、1.44×10^(2) copies/μL、1.34×10^(2) copies/μL,灵敏度高;仅对Kp、Sc、Mb这3种病原产生荧光曲线,对其他病原无交叉反应,特异性强;其中组内、组间变异系数均小于2%,重复性良好。利用建立的多重real-time PCR对233份临床样品进行检测,Kp、Sc、Mb检出率分别为73.09%、21.97%、6.72%,与单一real-time PCR方法检测结果一致。说明建立的多重real-time PCR在实际应用中具有灵敏度高、特异性强、重复性良好、检测速度快等优点,可为奶牛临床型乳房炎病原的快速检测、临床诊断和流行病学调查提供有效检测手段。 展开更多
关键词 临床型乳房炎 三重real-time PCR 肺炎克雷伯菌 产色葡萄球菌 牛支原体
在线阅读 下载PDF
Real-Time Implementation for Reduced-Complexity LDPC Decoder in Satellite Communication 被引量:4
3
作者 WANG Yongqing LIU Donglei +1 位作者 SUN Lida WU Siliang 《China Communications》 SCIE CSCD 2014年第12期94-104,共11页
In this paper,it has proposed a realtime implementation of low-density paritycheck(LDPC)decoder with less complexity used for satellite communication on FPGA platform.By adopting a(2048.4096)irregular quasi-cyclic(QC)... In this paper,it has proposed a realtime implementation of low-density paritycheck(LDPC)decoder with less complexity used for satellite communication on FPGA platform.By adopting a(2048.4096)irregular quasi-cyclic(QC)LDPC code,the proposed partly parallel decoding structure balances the complexity between the check node unit(CNU)and the variable node unit(VNU)based on min-sum(MS)algorithm,thereby achieving less Slice resources and superior clock performance.Moreover,as a lookup table(LUT)is utilized in this paper to search the node message stored in timeshare memory unit,it is simple to reuse and save large amount of storage resources.The implementation results on Xilinx FPGA chip illustrate that,compared with conventional structure,the proposed scheme can achieve at last 28.6%and 8%cost reduction in RAM and Slice respectively.The clock frequency is also increased to 280 MHz without decoding performance deterioration and convergence speed reduction. 展开更多
关键词 quasi—cyclic code LDPC decoder m in-sum algorithm partial parallel structure lookup table
在线阅读 下载PDF
IoT-Based Real-Time Medical-Related Human Activity Recognition Using Skeletons and Multi-Stage Deep Learning for Healthcare 被引量:1
4
作者 Subrata Kumer Paul Abu Saleh Musa Miah +3 位作者 Rakhi Rani Paul Md.EkramulHamid Jungpil Shin Md Abdur Rahim 《Computers, Materials & Continua》 2025年第8期2513-2530,共18页
The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for he... The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs. 展开更多
关键词 real-time human motion recognition(HMR) ENConvLSTM EfficientNet ConvLSTM skeleton data NTU RGB+D 120 dataset MRHA
在线阅读 下载PDF
Real-Time Communication Driver for MPU Accelerometer Using Predictable Non-Blocking I2C Communication
5
作者 Valentin Stangaciu Mihai-Vladimir Ghimpau Adrian-Gabriel Sztanarec 《Computers, Materials & Continua》 2025年第11期3213-3229,共17页
Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does no... Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems. 展开更多
关键词 real-time accelerometer real-time sensing Internet of Things real-time wireless sensor networks predictable time-bounded accelerometer real-time systems
在线阅读 下载PDF
Computation-Efficient Decoding of LDPC Codes for High-Speed Space Laser Communications
6
作者 Hu Zhuojun Chen Zhao +1 位作者 Kuang Linling Yin Liuguo 《China Communications》 2025年第12期108-123,共16页
Space laser communication(SLC)is an emerging technology to support high-throughput data transmissions in space networks.In this paper,to guarantee the reliability of high-speed SLC links,we aim at practical implementa... Space laser communication(SLC)is an emerging technology to support high-throughput data transmissions in space networks.In this paper,to guarantee the reliability of high-speed SLC links,we aim at practical implementation of low-density paritycheck(LDPC)decoding under resource-restricted space platforms.Particularly,due to the supply restriction and cost issues of high-speed on-board devices such as analog-to-digital converters(ADCs),the input of LDPC decoding will be usually constrained by hard-decision channel output.To tackle this challenge,density-evolution-based theoretical analysis is firstly performed to identify the cause of performance degradation in the conventional binaryinitialized iterative decoding(BIID)algorithm.Then,a computation-efficient decoding algorithm named multiary-initialized iterative decoding with early termination(MIID-ET)is proposed,which improves the error-correcting performance and computation efficiency by using a reliability-based initialization method and a threshold-based decoding termination rule.Finally,numerical simulations are conducted on example codes of rates 7/8 and 1/2 to evaluate the performance of different LDPC decoding algorithms,where the proposed MIID-ET outperforms the BIID with a coding gain of 0.38 dB and variable node calculation saving of 37%.With this advantage,the proposed MIID-ET can notably reduce LDPC decoder’s hardware implementation complexity under the same bit error rate performance,which successfully doubles the total throughput to 10 Gbps on a single-chip FPGA. 展开更多
关键词 computation-efficient decoding highspeed decoders LDPC codes LLR initialization space laser communications
在线阅读 下载PDF
Research on deep learning decoding method for polar codes in ACO-OFDM spatial optical communication system
7
作者 LIU Kangrui LI Ming +2 位作者 CHEN Sizhe QU Jiashun ZHOU Ming’ou 《Optoelectronics Letters》 2025年第7期427-433,共7页
Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbule... Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder. 展开更多
关键词 frequency conduction polar codes deep learning signal demodulation deep learning technique decoding ACO OFDM polarization code decoding
原文传递
Low Complexity Successive Cancellation List Decoding of U-UV Codes
8
作者 Chen Wenhao Chen Li +1 位作者 Lin Jingyu Zhang Huazi 《China Communications》 2025年第1期41-60,共20页
Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-med... Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity. 展开更多
关键词 ordered statistics decoding successive cancellation list decoding U-UV codes
在线阅读 下载PDF
Large Language Models With Contrastive Decoding Algorithm for Hallucination Mitigation in Low-Resource Languages
9
作者 Zan Hongying Arifa Javed +2 位作者 Muhammad Abdullah Javed Rashid Muhammad Faheem 《CAAI Transactions on Intelligence Technology》 2025年第4期1104-1117,共14页
Neural machine translation(NMT)has advanced with deep learning and large-scale multilingual models,yet translating lowresource languages often lacks sufficient training data and leads to hallucinations.This often resu... Neural machine translation(NMT)has advanced with deep learning and large-scale multilingual models,yet translating lowresource languages often lacks sufficient training data and leads to hallucinations.This often results in translated content that diverges significantly from the source text.This research proposes a refined Contrastive Decoding(CD)algorithm that dynamically adjusts weights of log probabilities from strong expert and weak amateur models to mitigate hallucinations in lowresource NMT and improve translation quality.Advanced large language NMT models,including ChatGLM and LLaMA,are fine-tuned and implemented for their superior contextual understanding and cross-lingual capabilities.The refined CD algorithm evaluates multiple candidate translations using BLEU score,semantic similarity,and Named Entity Recognition accuracy.Extensive experimental results show substantial improvements in translation quality and a significant reduction in hallucination rates.Fine-tuned models achieve higher evaluation metrics compared to baseline models and state-of-the-art models.An ablation study confirms the contributions of each methodological component and highlights the effectiveness of the refined CD algorithm and advanced models in mitigating hallucinations.Notably,the refined methodology increased the BLEU score by approximately 30%compared to baseline models. 展开更多
关键词 ChatGLM contrastive decoding HALLUCINATION LLAMA LLM low resource NMT
在线阅读 下载PDF
Modulation of tRNA^(Cln)decoding efficacy by metal ion binding and glutamine supply
10
作者 Yuxuan Shen Tianchang Wang +3 位作者 Hua Qiao Qing Liang Jingru Lv Qing Xia 《Journal of Chinese Pharmaceutical Sciences》 2025年第1期28-40,共13页
Transfer RNAs(tRNAs)adopt a stable L-shaped tertiary structure crucial for their involvement in protein translation.Among various divalent metal ions,magnesium ions play a pivotal role in preserving the tertiary struc... Transfer RNAs(tRNAs)adopt a stable L-shaped tertiary structure crucial for their involvement in protein translation.Among various divalent metal ions,magnesium ions play a pivotal role in preserving the tertiary structure of tRNA.However,the precise location of the Mg^(2+)binding pocket in human tRNA remains elusive.In this investigation,we identified the Mg^(2+)binding site within human tRNAGln using suppressor tRNA^(Gln).This variant of tRNA recognizes premature stop codons(specificlly UAG)and facilitates the expression of fll-length proteis.By mutating sites 8 and C72 in supprssr tRNAcl,we assessed the decoding efficiency of the resulting mutant suppressor tRNAs,which serves as a measure of tRNA's ability to decode genetic information.Our analysis revealed that the U8C mutant suppressor tRNA exhibited a significantly lower Mg^(2+)content compared to the C72U mutant.Furthermore,we observed a notable reduction in decoding efficiency in the U8-mutated suppressor tRNA,as evidenced by GFP fluorescence and Western blotting analysis.Conversely,mutations at the C72 site had a comparatively minor impact on decoding efficiency.These findings underscored the tight binding of Mg^(2+)to the U8 site of human tRNAGln,crucial for maintaining the stability of tRNA tertiary structure and translation efficacy.Additionally,our investigation delved into the influence of glutamine availability on tRNA decoding efficiency at the cellular level.The results indicated that both the concentration of amino acids and the codon context of TAG could modulate tRNA decoding efficiency.This study provided valuable insights into the structure and function of tRNA,laying the groundwork for further exploration in this field. 展开更多
关键词 Metal ions tRNA tertiary structure Glutamine supply decoding efficacy
原文传递
Decoding of Surface Meteorological Observation Data Files and Application Research on Climatic Data
11
作者 Hui LIANG Xianqiang SU Qingyun ZHU 《Meteorological and Environmental Research》 2025年第2期16-21,25,共7页
In this paper,Wuzhou City of Guangxi was taken as the research object.Through the design of a climatic data warehousing system,the decoding methods of surface meteorological data and their application in the managemen... In this paper,Wuzhou City of Guangxi was taken as the research object.Through the design of a climatic data warehousing system,the decoding methods of surface meteorological data and their application in the management of climatic data were explored.Based on the parsing technology of the monthly report of surface meteorological records(A-file),the design of Wuzhou climatic data warehousing system was realized,completing the precise extraction and database construction of observational elements such as regional temperature,wind direction,and weather phenomena.Based on this system,the meteorological data in 2024 were analyzed,and the probabilistic characteristics of dominant wind direction in Wuzhou(northeast wind accounting for the largest proportion),the spatiotemporal distribution patterns of extreme temperatures(annual extreme high temperature of 37.1℃in August and extreme low temperature of 1.9℃in January),and the general climatic overview of Wuzhou City(annual precipitation 3.2%higher than the standard value)were revealed.The research shows that climate change has a significant impact on agricultural production and economic development in Wuzhou City,and the construction of a reasonable climatic data database is of great significance for enhancing professional meteorological service capabilities in the context of climate change.This study not only provides a scientific basis for the economic development of Wuzhou region,but also offers reference ideas for other regions to cope with regional climate adaptation planning. 展开更多
关键词 Surface meteorological observation A-file decoding Climatic database Climate change
在线阅读 下载PDF
An Efficient Temporal Decoding Module for Action Recognition
12
作者 HUANG Qiubo MEI Jianmin +3 位作者 ZHAO Wupeng LU Yiru WANG Mei CHEN Dehua 《Journal of Donghua University(English Edition)》 2025年第2期187-196,共10页
Action recognition,a fundamental task in the field of video understanding,has been extensively researched and applied.In contrast to an image,a video introduces an extra temporal dimension.However,many existing action... Action recognition,a fundamental task in the field of video understanding,has been extensively researched and applied.In contrast to an image,a video introduces an extra temporal dimension.However,many existing action recognition networks either perform simple temporal fusion through averaging or rely on pre-trained models from image recognition,resulting in limited temporal information extraction capabilities.This work proposes a highly efficient temporal decoding module that can be seamlessly integrated into any action recognition backbone network to enhance the focus on temporal relationships between video frames.Firstly,the decoder initializes a set of learnable queries,termed video-level action category prediction queries.Then,they are combined with the video frame features extracted by the backbone network after self-attention learning to extract video context information.Finally,these prediction queries with rich temporal features are used for category prediction.Experimental results on HMDB51,MSRDailyAct3D,Diving48 and Breakfast datasets show that using TokShift-Transformer and VideoMAE as encoders results in a significant improvement in Top-1 accuracy compared to the original models(TokShift-Transformer and VideoMAE),after introducing the proposed temporal decoder.The introduction of the temporal decoder results in an average performance increase exceeding 11%for TokShift-Transformer and nearly 5%for VideoMAE across the four datasets.Furthermore,the work explores the combination of the decoder with various action recognition networks,including Timesformer,as encoders.This results in an average accuracy improvement of more than 3.5%on the HMDB51 dataset.The code is available at https://github.com/huangturbo/TempDecoder. 展开更多
关键词 action recognition video understanding temporal relationship temporal decoder TRANSFORMER
在线阅读 下载PDF
An Optimization of Weak Key Attacks Based on the BGF Decoding Algorithm
13
作者 Bing Liu Ting Nie +1 位作者 Yansong Liu Weibo Hu 《Computers, Materials & Continua》 2025年第9期4583-4599,共17页
Among the four candidate algorithms in the fourth round of NIST standardization,the BIKE(Bit Flipping Key Encapsulation)scheme has a small key size and high efficiency,showing good prospects for application.However,th... Among the four candidate algorithms in the fourth round of NIST standardization,the BIKE(Bit Flipping Key Encapsulation)scheme has a small key size and high efficiency,showing good prospects for application.However,the BIKE scheme based on QC-MDPC(Quasi Cyclic Medium Density Parity Check)codes still faces challenges such as the GJS attack and weak key attacks targeting the decoding failure rate(DFR).This paper analyzes the BGF decoding algorithm of the BIKE scheme,revealing two deep factors that lead to DFR,and proposes a weak key optimization attack method for the BGF decoding algorithm based on these two factors.The proposed method constructs a new weak key set,and experiment results eventually indicate that,considering BIKE’s parameter set targeting 128-bit security,the average decryption failure rate is lowerly bounded by.This result not only highlights a significant vulnerability in the BIKE scheme but also provides valuable insights for future improvements in its design.By addressing these weaknesses,the robustness of QC-MDPC code-based cryptographic systems can be enhanced,paving the way for more secure post-quantum cryptographic solutions. 展开更多
关键词 BIKE BGF decoding algorithm weak key attack GJS attack
在线阅读 下载PDF
Bilateral Dual-Residual Real-Time Semantic Segmentation Network
14
作者 Shijie Xiang Dong Zhou +1 位作者 Dan Tian Zihao Wang 《Computers, Materials & Continua》 2025年第4期497-515,共19页
Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation... Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance. 展开更多
关键词 real-time residual structure semantic segmentation feature fusion
在线阅读 下载PDF
Real-time electrochemical monitoring sensor for pollutant degradation through galvanic cell system
15
作者 Wu-Xiang Zhang Zi-Han Li +6 位作者 Rong-Sheng Xiao Xin-Gang Wang Hong-Liang Dai Sheng Tang Jian-Zhong Zheng Ming Yang Sai-Sai Yuan 《Rare Metals》 2025年第3期1800-1812,共13页
Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilize... Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilized as the anode electrode,while graphite rods served as the cathode electrode in assembling the galvanic cell.The FeCo@CF electrode exhibited rapid reactivity with PMS,generating reactive oxygen species that efficiently degrade organic pollutants.The degradation experiments indicate that complete bisphenol A(BPA)degradation was achieved within 10 min under optimal conditions.The real-time electrochemical signal was measured in time during the catalytic reaction,and a linear relationship between BPA concentration and the real-time charge(Q)was confirmed by the equation ln(C0/C)=4.393Q(correlation coefficients,R^(2)=0.998).Furthermore,experiments conducted with aureomycin and tetracycline further validated the effectiveness of the monitoring sensor.First-principles investigation confirmed the superior adsorption energy and improved electron transfer in FeCo@CF.The integration of pollutant degradation with in situ monitoring of catalytic reactions offers promising prospects for expanding the scope of the monitoring of catalytic processes and making significant contributions to environmental purification. 展开更多
关键词 Galvanic cell DEGRADATION Catalytic progress real-time monitoring
原文传递
Improved Polytope Generation for CRC-Aided Adaptive Linear Programming Polar Decoding
16
作者 Xie Mutong Du Zhongze +2 位作者 Zou Guoxue Tian Lin Yuan Jinhong 《China Communications》 2025年第12期124-136,共13页
Linear programming(LP)decoding is a classic decoding method for linear block codes,and has attracted recent researches because its potential in joint channel processing.However,for polar codes,LP decoders has long bee... Linear programming(LP)decoding is a classic decoding method for linear block codes,and has attracted recent researches because its potential in joint channel processing.However,for polar codes,LP decoders has long been outperformed by CRCaided successive cancellation list(CA-SCL)decoders.To increase the competitiveness of 5G NR LP polar decoding,it is possible to gain performance improvements by exploiting the cyclic redundancy check(CRC)setup.In this paper,we propose a combined scheme of reduced sparsified factor graph-sparsified CRC(RSFG-SCRC)and augmented generator matrix-CRC(AGM-CRC),for polytope generation in adaptive linear programming(ALP)decoder for 5G polar codes.Augmented generator matrix(AGM)polytope and improved maximum cycle strategy-auxiliary node pairs 4(MCS-ANP-4)algorithm are proposed,to make efficient use of CRC constraints and minimize the constraint size for the decoder.Numerical simulations show that adaptive linear programming decoders with our proposed RSFG-SCRC and AGM-CRC polytopes can achieve significantly better block error rate(BLER)performance than a benchmark CA-SCL-8 decoder especially in harsh low-to-medium SNR regions. 展开更多
关键词 codeword polytope cyclic redundancy check 5G NR linear programming decoding polar code
在线阅读 下载PDF
Real-time seepage and instability of fractured granite subjected to hydro-shearing under different critical slip states
17
作者 Peng Zhao Zijun Feng +3 位作者 Hanmo Nan Peihua Jin Chunsheng Deng Yubin Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2396-2415,共20页
In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing perme... In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing permeability and injection-induced seismicity during hot dry rock geothermal extraction.For optimizing injection strategies and improving engineering safety,real-time permeability,deformation,and energy release characteristics of fractured granite samples driven by injected water pressure under different critical sliding conditions were evaluated.The results indicated that:(1)A low injection water pressure induced intermittent small-deformation stick-slip behavior in fractures,and a high injection pressure primarily caused continuous high-speed large-deformation sliding in fractures.The optimal injection water pressure range was defined for enhancing hydraulic shear permeability and preventing large injection-induced earthquakes.(2)Under the same experimental conditions,fracture sliding was deemed as the major factor that enhanced the hydraulic shear-permeability enhancement and the maximum permeability increased by 36.54 and 41.59 times,respectively,in above two slip modes.(3)Based on the real-time transient evolution of water pressure during fracture sliding,the variation coefficients of slip rate,permeability,and water pressure were fitted,and the results were different from those measured under quasi-static conditions.(4)The maximum and minimum shear strength criteria for injection-induced fracture sliding were also determined(μ=0.6665 andμ=0.1645,respectively,μis friction coefficient).Using the 3D(three-dimensional)fracture surface scanning technology,the weakening effect of injection pressure on fracture surface damage characteristics was determined,which provided evidence for the geological markers of fault sliding mode and sliding nature transitions under the fluid influence. 展开更多
关键词 Hydro-shearing Reservoir modification Injection-induced seismicity real-time shear-flowing Frictional noise
在线阅读 下载PDF
Enhancing IoT Resilience at the Edge:A Resource-Efficient Framework for Real-Time Anomaly Detection in Streaming Data
18
作者 Kirubavathi G. Arjun Pulliyasseri +5 位作者 Aswathi Rajesh Amal Ajayan Sultan Alfarhood Mejdl Safran Meshal Alfarhood Jungpil Shin 《Computer Modeling in Engineering & Sciences》 2025年第6期3005-3031,共27页
The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability... The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices. 展开更多
关键词 Anomaly detection streaming data IOT IIoT TMoT real-time LIGHTWEIGHT modeling
在线阅读 下载PDF
Contextual design and real-time verification for agile casting design
19
作者 Dong Xiang Chu-hao Zhou +3 位作者 Xuan-pu Dong Shu-ren Guo Yan-song Ding Hua-tang Cao 《China Foundry》 2025年第2期231-238,共8页
In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the fea... In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market. 展开更多
关键词 agile design context-design casting process design real-time verification smart manufacturing
在线阅读 下载PDF
Multi-protocol quantum key distribution decoding chip
20
作者 Chun-Xue Zhang Jian-Guang Li +3 位作者 Yue Wang Wei Chen Jia-Shun Zhang Jun-Ming An 《Chinese Physics B》 2025年第5期34-41,共8页
Quantum key distribution(QKD)is a method for secure communication that utilizes quantum mechanics principles to distribute cryptographic keys between parties.Integrated photonics offer benefits such as compactness,sca... Quantum key distribution(QKD)is a method for secure communication that utilizes quantum mechanics principles to distribute cryptographic keys between parties.Integrated photonics offer benefits such as compactness,scalability,energy efficiency and the potential for extensive integration.We have achieved BB84 phase encoding and decoding,time-bin phase QKD,and the coherent one-way(COW)protocol on a planar lightwave circuit(PLC)platform.At the optimal temperature,our chip successfully prepared quantum states,performed decoding and calculated the secure key rate of the time-bin phasedecoding QKD to be 80.46 kbps over a 20 km transmission with a quantum bit error rate(QBER)of 4.23%.The secure key rate of the COW protocol was 18.18 kbps,with a phase error rate of 3.627%and a time error rate of 0.377%.The uniqueness of this technology lies in its combination of high integration and protocol flexibility,providing an innovative solution for the development of future quantum communication networks. 展开更多
关键词 quantum key distribution(QKD) secure key rate decoding chip quantum bit error rate
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部