A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decod...A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet.展开更多
In this paper,it has proposed a realtime implementation of low-density paritycheck(LDPC)decoder with less complexity used for satellite communication on FPGA platform.By adopting a(2048.4096)irregular quasi-cyclic(QC)...In this paper,it has proposed a realtime implementation of low-density paritycheck(LDPC)decoder with less complexity used for satellite communication on FPGA platform.By adopting a(2048.4096)irregular quasi-cyclic(QC)LDPC code,the proposed partly parallel decoding structure balances the complexity between the check node unit(CNU)and the variable node unit(VNU)based on min-sum(MS)algorithm,thereby achieving less Slice resources and superior clock performance.Moreover,as a lookup table(LUT)is utilized in this paper to search the node message stored in timeshare memory unit,it is simple to reuse and save large amount of storage resources.The implementation results on Xilinx FPGA chip illustrate that,compared with conventional structure,the proposed scheme can achieve at last 28.6%and 8%cost reduction in RAM and Slice respectively.The clock frequency is also increased to 280 MHz without decoding performance deterioration and convergence speed reduction.展开更多
The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for he...The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.展开更多
Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does no...Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems.展开更多
Space laser communication(SLC)is an emerging technology to support high-throughput data transmissions in space networks.In this paper,to guarantee the reliability of high-speed SLC links,we aim at practical implementa...Space laser communication(SLC)is an emerging technology to support high-throughput data transmissions in space networks.In this paper,to guarantee the reliability of high-speed SLC links,we aim at practical implementation of low-density paritycheck(LDPC)decoding under resource-restricted space platforms.Particularly,due to the supply restriction and cost issues of high-speed on-board devices such as analog-to-digital converters(ADCs),the input of LDPC decoding will be usually constrained by hard-decision channel output.To tackle this challenge,density-evolution-based theoretical analysis is firstly performed to identify the cause of performance degradation in the conventional binaryinitialized iterative decoding(BIID)algorithm.Then,a computation-efficient decoding algorithm named multiary-initialized iterative decoding with early termination(MIID-ET)is proposed,which improves the error-correcting performance and computation efficiency by using a reliability-based initialization method and a threshold-based decoding termination rule.Finally,numerical simulations are conducted on example codes of rates 7/8 and 1/2 to evaluate the performance of different LDPC decoding algorithms,where the proposed MIID-ET outperforms the BIID with a coding gain of 0.38 dB and variable node calculation saving of 37%.With this advantage,the proposed MIID-ET can notably reduce LDPC decoder’s hardware implementation complexity under the same bit error rate performance,which successfully doubles the total throughput to 10 Gbps on a single-chip FPGA.展开更多
Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbule...Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.展开更多
Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-med...Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.展开更多
Neural machine translation(NMT)has advanced with deep learning and large-scale multilingual models,yet translating lowresource languages often lacks sufficient training data and leads to hallucinations.This often resu...Neural machine translation(NMT)has advanced with deep learning and large-scale multilingual models,yet translating lowresource languages often lacks sufficient training data and leads to hallucinations.This often results in translated content that diverges significantly from the source text.This research proposes a refined Contrastive Decoding(CD)algorithm that dynamically adjusts weights of log probabilities from strong expert and weak amateur models to mitigate hallucinations in lowresource NMT and improve translation quality.Advanced large language NMT models,including ChatGLM and LLaMA,are fine-tuned and implemented for their superior contextual understanding and cross-lingual capabilities.The refined CD algorithm evaluates multiple candidate translations using BLEU score,semantic similarity,and Named Entity Recognition accuracy.Extensive experimental results show substantial improvements in translation quality and a significant reduction in hallucination rates.Fine-tuned models achieve higher evaluation metrics compared to baseline models and state-of-the-art models.An ablation study confirms the contributions of each methodological component and highlights the effectiveness of the refined CD algorithm and advanced models in mitigating hallucinations.Notably,the refined methodology increased the BLEU score by approximately 30%compared to baseline models.展开更多
Transfer RNAs(tRNAs)adopt a stable L-shaped tertiary structure crucial for their involvement in protein translation.Among various divalent metal ions,magnesium ions play a pivotal role in preserving the tertiary struc...Transfer RNAs(tRNAs)adopt a stable L-shaped tertiary structure crucial for their involvement in protein translation.Among various divalent metal ions,magnesium ions play a pivotal role in preserving the tertiary structure of tRNA.However,the precise location of the Mg^(2+)binding pocket in human tRNA remains elusive.In this investigation,we identified the Mg^(2+)binding site within human tRNAGln using suppressor tRNA^(Gln).This variant of tRNA recognizes premature stop codons(specificlly UAG)and facilitates the expression of fll-length proteis.By mutating sites 8 and C72 in supprssr tRNAcl,we assessed the decoding efficiency of the resulting mutant suppressor tRNAs,which serves as a measure of tRNA's ability to decode genetic information.Our analysis revealed that the U8C mutant suppressor tRNA exhibited a significantly lower Mg^(2+)content compared to the C72U mutant.Furthermore,we observed a notable reduction in decoding efficiency in the U8-mutated suppressor tRNA,as evidenced by GFP fluorescence and Western blotting analysis.Conversely,mutations at the C72 site had a comparatively minor impact on decoding efficiency.These findings underscored the tight binding of Mg^(2+)to the U8 site of human tRNAGln,crucial for maintaining the stability of tRNA tertiary structure and translation efficacy.Additionally,our investigation delved into the influence of glutamine availability on tRNA decoding efficiency at the cellular level.The results indicated that both the concentration of amino acids and the codon context of TAG could modulate tRNA decoding efficiency.This study provided valuable insights into the structure and function of tRNA,laying the groundwork for further exploration in this field.展开更多
In this paper,Wuzhou City of Guangxi was taken as the research object.Through the design of a climatic data warehousing system,the decoding methods of surface meteorological data and their application in the managemen...In this paper,Wuzhou City of Guangxi was taken as the research object.Through the design of a climatic data warehousing system,the decoding methods of surface meteorological data and their application in the management of climatic data were explored.Based on the parsing technology of the monthly report of surface meteorological records(A-file),the design of Wuzhou climatic data warehousing system was realized,completing the precise extraction and database construction of observational elements such as regional temperature,wind direction,and weather phenomena.Based on this system,the meteorological data in 2024 were analyzed,and the probabilistic characteristics of dominant wind direction in Wuzhou(northeast wind accounting for the largest proportion),the spatiotemporal distribution patterns of extreme temperatures(annual extreme high temperature of 37.1℃in August and extreme low temperature of 1.9℃in January),and the general climatic overview of Wuzhou City(annual precipitation 3.2%higher than the standard value)were revealed.The research shows that climate change has a significant impact on agricultural production and economic development in Wuzhou City,and the construction of a reasonable climatic data database is of great significance for enhancing professional meteorological service capabilities in the context of climate change.This study not only provides a scientific basis for the economic development of Wuzhou region,but also offers reference ideas for other regions to cope with regional climate adaptation planning.展开更多
Action recognition,a fundamental task in the field of video understanding,has been extensively researched and applied.In contrast to an image,a video introduces an extra temporal dimension.However,many existing action...Action recognition,a fundamental task in the field of video understanding,has been extensively researched and applied.In contrast to an image,a video introduces an extra temporal dimension.However,many existing action recognition networks either perform simple temporal fusion through averaging or rely on pre-trained models from image recognition,resulting in limited temporal information extraction capabilities.This work proposes a highly efficient temporal decoding module that can be seamlessly integrated into any action recognition backbone network to enhance the focus on temporal relationships between video frames.Firstly,the decoder initializes a set of learnable queries,termed video-level action category prediction queries.Then,they are combined with the video frame features extracted by the backbone network after self-attention learning to extract video context information.Finally,these prediction queries with rich temporal features are used for category prediction.Experimental results on HMDB51,MSRDailyAct3D,Diving48 and Breakfast datasets show that using TokShift-Transformer and VideoMAE as encoders results in a significant improvement in Top-1 accuracy compared to the original models(TokShift-Transformer and VideoMAE),after introducing the proposed temporal decoder.The introduction of the temporal decoder results in an average performance increase exceeding 11%for TokShift-Transformer and nearly 5%for VideoMAE across the four datasets.Furthermore,the work explores the combination of the decoder with various action recognition networks,including Timesformer,as encoders.This results in an average accuracy improvement of more than 3.5%on the HMDB51 dataset.The code is available at https://github.com/huangturbo/TempDecoder.展开更多
Among the four candidate algorithms in the fourth round of NIST standardization,the BIKE(Bit Flipping Key Encapsulation)scheme has a small key size and high efficiency,showing good prospects for application.However,th...Among the four candidate algorithms in the fourth round of NIST standardization,the BIKE(Bit Flipping Key Encapsulation)scheme has a small key size and high efficiency,showing good prospects for application.However,the BIKE scheme based on QC-MDPC(Quasi Cyclic Medium Density Parity Check)codes still faces challenges such as the GJS attack and weak key attacks targeting the decoding failure rate(DFR).This paper analyzes the BGF decoding algorithm of the BIKE scheme,revealing two deep factors that lead to DFR,and proposes a weak key optimization attack method for the BGF decoding algorithm based on these two factors.The proposed method constructs a new weak key set,and experiment results eventually indicate that,considering BIKE’s parameter set targeting 128-bit security,the average decryption failure rate is lowerly bounded by.This result not only highlights a significant vulnerability in the BIKE scheme but also provides valuable insights for future improvements in its design.By addressing these weaknesses,the robustness of QC-MDPC code-based cryptographic systems can be enhanced,paving the way for more secure post-quantum cryptographic solutions.展开更多
Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation...Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance.展开更多
Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilize...Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilized as the anode electrode,while graphite rods served as the cathode electrode in assembling the galvanic cell.The FeCo@CF electrode exhibited rapid reactivity with PMS,generating reactive oxygen species that efficiently degrade organic pollutants.The degradation experiments indicate that complete bisphenol A(BPA)degradation was achieved within 10 min under optimal conditions.The real-time electrochemical signal was measured in time during the catalytic reaction,and a linear relationship between BPA concentration and the real-time charge(Q)was confirmed by the equation ln(C0/C)=4.393Q(correlation coefficients,R^(2)=0.998).Furthermore,experiments conducted with aureomycin and tetracycline further validated the effectiveness of the monitoring sensor.First-principles investigation confirmed the superior adsorption energy and improved electron transfer in FeCo@CF.The integration of pollutant degradation with in situ monitoring of catalytic reactions offers promising prospects for expanding the scope of the monitoring of catalytic processes and making significant contributions to environmental purification.展开更多
Linear programming(LP)decoding is a classic decoding method for linear block codes,and has attracted recent researches because its potential in joint channel processing.However,for polar codes,LP decoders has long bee...Linear programming(LP)decoding is a classic decoding method for linear block codes,and has attracted recent researches because its potential in joint channel processing.However,for polar codes,LP decoders has long been outperformed by CRCaided successive cancellation list(CA-SCL)decoders.To increase the competitiveness of 5G NR LP polar decoding,it is possible to gain performance improvements by exploiting the cyclic redundancy check(CRC)setup.In this paper,we propose a combined scheme of reduced sparsified factor graph-sparsified CRC(RSFG-SCRC)and augmented generator matrix-CRC(AGM-CRC),for polytope generation in adaptive linear programming(ALP)decoder for 5G polar codes.Augmented generator matrix(AGM)polytope and improved maximum cycle strategy-auxiliary node pairs 4(MCS-ANP-4)algorithm are proposed,to make efficient use of CRC constraints and minimize the constraint size for the decoder.Numerical simulations show that adaptive linear programming decoders with our proposed RSFG-SCRC and AGM-CRC polytopes can achieve significantly better block error rate(BLER)performance than a benchmark CA-SCL-8 decoder especially in harsh low-to-medium SNR regions.展开更多
In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing perme...In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing permeability and injection-induced seismicity during hot dry rock geothermal extraction.For optimizing injection strategies and improving engineering safety,real-time permeability,deformation,and energy release characteristics of fractured granite samples driven by injected water pressure under different critical sliding conditions were evaluated.The results indicated that:(1)A low injection water pressure induced intermittent small-deformation stick-slip behavior in fractures,and a high injection pressure primarily caused continuous high-speed large-deformation sliding in fractures.The optimal injection water pressure range was defined for enhancing hydraulic shear permeability and preventing large injection-induced earthquakes.(2)Under the same experimental conditions,fracture sliding was deemed as the major factor that enhanced the hydraulic shear-permeability enhancement and the maximum permeability increased by 36.54 and 41.59 times,respectively,in above two slip modes.(3)Based on the real-time transient evolution of water pressure during fracture sliding,the variation coefficients of slip rate,permeability,and water pressure were fitted,and the results were different from those measured under quasi-static conditions.(4)The maximum and minimum shear strength criteria for injection-induced fracture sliding were also determined(μ=0.6665 andμ=0.1645,respectively,μis friction coefficient).Using the 3D(three-dimensional)fracture surface scanning technology,the weakening effect of injection pressure on fracture surface damage characteristics was determined,which provided evidence for the geological markers of fault sliding mode and sliding nature transitions under the fluid influence.展开更多
The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability...The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices.展开更多
In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the fea...In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.展开更多
Quantum key distribution(QKD)is a method for secure communication that utilizes quantum mechanics principles to distribute cryptographic keys between parties.Integrated photonics offer benefits such as compactness,sca...Quantum key distribution(QKD)is a method for secure communication that utilizes quantum mechanics principles to distribute cryptographic keys between parties.Integrated photonics offer benefits such as compactness,scalability,energy efficiency and the potential for extensive integration.We have achieved BB84 phase encoding and decoding,time-bin phase QKD,and the coherent one-way(COW)protocol on a planar lightwave circuit(PLC)platform.At the optimal temperature,our chip successfully prepared quantum states,performed decoding and calculated the secure key rate of the time-bin phasedecoding QKD to be 80.46 kbps over a 20 km transmission with a quantum bit error rate(QBER)of 4.23%.The secure key rate of the COW protocol was 18.18 kbps,with a phase error rate of 3.627%and a time error rate of 0.377%.The uniqueness of this technology lies in its combination of high integration and protocol flexibility,providing an innovative solution for the development of future quantum communication networks.展开更多
基金supported in part by the National Key R&D Program of China(Grant No.2023YFB3307604)the Shanxi Province Basic Research Program Youth Science Research Project(Grant Nos.202303021212054 and 202303021212046)+3 种基金the Key Projects Supported by Hebei Natural Science Foundation(Grant No.E2024203125)the National Science Foundation of China(Grant No.52105391)the Hebei Provincial Science and Technology Major Project(Grant No.23280101Z)the National Key Laboratory of Metal Forming Technology and Heavy Equipment Open Fund(Grant No.S2308100.W17).
文摘A novel dual-branch decoding fusion convolutional neural network model(DDFNet)specifically designed for real-time salient object detection(SOD)on steel surfaces is proposed.DDFNet is based on a standard encoder–decoder architecture.DDFNet integrates three key innovations:first,we introduce a novel,lightweight multi-scale progressive aggregation residual network that effectively suppresses background interference and refines defect details,enabling efficient salient feature extraction.Then,we propose an innovative dual-branch decoding fusion structure,comprising the refined defect representation branch and the enhanced defect representation branch,which enhance accuracy in defect region identification and feature representation.Additionally,to further improve the detection of small and complex defects,we incorporate a multi-scale attention fusion module.Experimental results on the public ESDIs-SOD dataset show that DDFNet,with only 3.69 million parameters,achieves detection performance comparable to current state-of-the-art models,demonstrating its potential for real-time industrial applications.Furthermore,our DDFNet-L variant consistently outperforms leading methods in detection performance.The code is available at https://github.com/13140W/DDFNet.
文摘In this paper,it has proposed a realtime implementation of low-density paritycheck(LDPC)decoder with less complexity used for satellite communication on FPGA platform.By adopting a(2048.4096)irregular quasi-cyclic(QC)LDPC code,the proposed partly parallel decoding structure balances the complexity between the check node unit(CNU)and the variable node unit(VNU)based on min-sum(MS)algorithm,thereby achieving less Slice resources and superior clock performance.Moreover,as a lookup table(LUT)is utilized in this paper to search the node message stored in timeshare memory unit,it is simple to reuse and save large amount of storage resources.The implementation results on Xilinx FPGA chip illustrate that,compared with conventional structure,the proposed scheme can achieve at last 28.6%and 8%cost reduction in RAM and Slice respectively.The clock frequency is also increased to 280 MHz without decoding performance deterioration and convergence speed reduction.
基金funded by the ICT Division of theMinistry of Posts,Telecommunications,and Information Technology of Bangladesh under Grant Number 56.00.0000.052.33.005.21-7(Tracking No.22FS15306)support from the University of Rajshahi.
文摘The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.
文摘Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1005000)the National Natural Science Foundation of China(Grant No.62101308 and 62025110).
文摘Space laser communication(SLC)is an emerging technology to support high-throughput data transmissions in space networks.In this paper,to guarantee the reliability of high-speed SLC links,we aim at practical implementation of low-density paritycheck(LDPC)decoding under resource-restricted space platforms.Particularly,due to the supply restriction and cost issues of high-speed on-board devices such as analog-to-digital converters(ADCs),the input of LDPC decoding will be usually constrained by hard-decision channel output.To tackle this challenge,density-evolution-based theoretical analysis is firstly performed to identify the cause of performance degradation in the conventional binaryinitialized iterative decoding(BIID)algorithm.Then,a computation-efficient decoding algorithm named multiary-initialized iterative decoding with early termination(MIID-ET)is proposed,which improves the error-correcting performance and computation efficiency by using a reliability-based initialization method and a threshold-based decoding termination rule.Finally,numerical simulations are conducted on example codes of rates 7/8 and 1/2 to evaluate the performance of different LDPC decoding algorithms,where the proposed MIID-ET outperforms the BIID with a coding gain of 0.38 dB and variable node calculation saving of 37%.With this advantage,the proposed MIID-ET can notably reduce LDPC decoder’s hardware implementation complexity under the same bit error rate performance,which successfully doubles the total throughput to 10 Gbps on a single-chip FPGA.
基金supported by the National Natural Science Foundation of China(No.12104141).
文摘Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder.
基金supported by the National Natural Science Foundation of China(NSFC)with project ID 62071498the Guangdong National Science Foundation(GDNSF)with project ID 2024A1515010213.
文摘Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.
基金M.Faheem is supported by VTT Technical Research Center of Finland.
文摘Neural machine translation(NMT)has advanced with deep learning and large-scale multilingual models,yet translating lowresource languages often lacks sufficient training data and leads to hallucinations.This often results in translated content that diverges significantly from the source text.This research proposes a refined Contrastive Decoding(CD)algorithm that dynamically adjusts weights of log probabilities from strong expert and weak amateur models to mitigate hallucinations in lowresource NMT and improve translation quality.Advanced large language NMT models,including ChatGLM and LLaMA,are fine-tuned and implemented for their superior contextual understanding and cross-lingual capabilities.The refined CD algorithm evaluates multiple candidate translations using BLEU score,semantic similarity,and Named Entity Recognition accuracy.Extensive experimental results show substantial improvements in translation quality and a significant reduction in hallucination rates.Fine-tuned models achieve higher evaluation metrics compared to baseline models and state-of-the-art models.An ablation study confirms the contributions of each methodological component and highlights the effectiveness of the refined CD algorithm and advanced models in mitigating hallucinations.Notably,the refined methodology increased the BLEU score by approximately 30%compared to baseline models.
基金National Natural Science Foundation of China(Grant No.U23A20106)National Key Research and Development Program of China(Grant No.91510100MA6CG8UJ4K)。
文摘Transfer RNAs(tRNAs)adopt a stable L-shaped tertiary structure crucial for their involvement in protein translation.Among various divalent metal ions,magnesium ions play a pivotal role in preserving the tertiary structure of tRNA.However,the precise location of the Mg^(2+)binding pocket in human tRNA remains elusive.In this investigation,we identified the Mg^(2+)binding site within human tRNAGln using suppressor tRNA^(Gln).This variant of tRNA recognizes premature stop codons(specificlly UAG)and facilitates the expression of fll-length proteis.By mutating sites 8 and C72 in supprssr tRNAcl,we assessed the decoding efficiency of the resulting mutant suppressor tRNAs,which serves as a measure of tRNA's ability to decode genetic information.Our analysis revealed that the U8C mutant suppressor tRNA exhibited a significantly lower Mg^(2+)content compared to the C72U mutant.Furthermore,we observed a notable reduction in decoding efficiency in the U8-mutated suppressor tRNA,as evidenced by GFP fluorescence and Western blotting analysis.Conversely,mutations at the C72 site had a comparatively minor impact on decoding efficiency.These findings underscored the tight binding of Mg^(2+)to the U8 site of human tRNAGln,crucial for maintaining the stability of tRNA tertiary structure and translation efficacy.Additionally,our investigation delved into the influence of glutamine availability on tRNA decoding efficiency at the cellular level.The results indicated that both the concentration of amino acids and the codon context of TAG could modulate tRNA decoding efficiency.This study provided valuable insights into the structure and function of tRNA,laying the groundwork for further exploration in this field.
基金Supported by the Fifth Batch of Innovation Teams of Wuzhou Meteorological Bureau“Wuzhou Innovation Team for Enhancing the Comprehensive Meteorological Observation Ability through Digitization and Intelligence”Project of Wuzhou Science and Technology Bureau(202402122)Wuzhou Science and Technology Planning Project(202402119).
文摘In this paper,Wuzhou City of Guangxi was taken as the research object.Through the design of a climatic data warehousing system,the decoding methods of surface meteorological data and their application in the management of climatic data were explored.Based on the parsing technology of the monthly report of surface meteorological records(A-file),the design of Wuzhou climatic data warehousing system was realized,completing the precise extraction and database construction of observational elements such as regional temperature,wind direction,and weather phenomena.Based on this system,the meteorological data in 2024 were analyzed,and the probabilistic characteristics of dominant wind direction in Wuzhou(northeast wind accounting for the largest proportion),the spatiotemporal distribution patterns of extreme temperatures(annual extreme high temperature of 37.1℃in August and extreme low temperature of 1.9℃in January),and the general climatic overview of Wuzhou City(annual precipitation 3.2%higher than the standard value)were revealed.The research shows that climate change has a significant impact on agricultural production and economic development in Wuzhou City,and the construction of a reasonable climatic data database is of great significance for enhancing professional meteorological service capabilities in the context of climate change.This study not only provides a scientific basis for the economic development of Wuzhou region,but also offers reference ideas for other regions to cope with regional climate adaptation planning.
基金Shanghai Municipal Commission of Economy and Information Technology,China (No.202301054)。
文摘Action recognition,a fundamental task in the field of video understanding,has been extensively researched and applied.In contrast to an image,a video introduces an extra temporal dimension.However,many existing action recognition networks either perform simple temporal fusion through averaging or rely on pre-trained models from image recognition,resulting in limited temporal information extraction capabilities.This work proposes a highly efficient temporal decoding module that can be seamlessly integrated into any action recognition backbone network to enhance the focus on temporal relationships between video frames.Firstly,the decoder initializes a set of learnable queries,termed video-level action category prediction queries.Then,they are combined with the video frame features extracted by the backbone network after self-attention learning to extract video context information.Finally,these prediction queries with rich temporal features are used for category prediction.Experimental results on HMDB51,MSRDailyAct3D,Diving48 and Breakfast datasets show that using TokShift-Transformer and VideoMAE as encoders results in a significant improvement in Top-1 accuracy compared to the original models(TokShift-Transformer and VideoMAE),after introducing the proposed temporal decoder.The introduction of the temporal decoder results in an average performance increase exceeding 11%for TokShift-Transformer and nearly 5%for VideoMAE across the four datasets.Furthermore,the work explores the combination of the decoder with various action recognition networks,including Timesformer,as encoders.This results in an average accuracy improvement of more than 3.5%on the HMDB51 dataset.The code is available at https://github.com/huangturbo/TempDecoder.
基金funded by Beijing Institute of Electronic Science and Technology Postgraduate Excellence Demonstration Course Project(20230002Z0452).
文摘Among the four candidate algorithms in the fourth round of NIST standardization,the BIKE(Bit Flipping Key Encapsulation)scheme has a small key size and high efficiency,showing good prospects for application.However,the BIKE scheme based on QC-MDPC(Quasi Cyclic Medium Density Parity Check)codes still faces challenges such as the GJS attack and weak key attacks targeting the decoding failure rate(DFR).This paper analyzes the BGF decoding algorithm of the BIKE scheme,revealing two deep factors that lead to DFR,and proposes a weak key optimization attack method for the BGF decoding algorithm based on these two factors.The proposed method constructs a new weak key set,and experiment results eventually indicate that,considering BIKE’s parameter set targeting 128-bit security,the average decryption failure rate is lowerly bounded by.This result not only highlights a significant vulnerability in the BIKE scheme but also provides valuable insights for future improvements in its design.By addressing these weaknesses,the robustness of QC-MDPC code-based cryptographic systems can be enhanced,paving the way for more secure post-quantum cryptographic solutions.
文摘Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance.
基金supported by the National Natural Science Foundation of China(No.22306076)the Natural Science Foundation of Jiangsu Province(No.BK20230676)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.22KJB610011).
文摘Here,a novel real-time monitoring sensor that integrates the oxidation of peroxymonosulfate(PMS)and the in situ monitoring of the pollutant degradation process is proposed.Briefly,FeCo@carbon fiber(FeCo@CF)was utilized as the anode electrode,while graphite rods served as the cathode electrode in assembling the galvanic cell.The FeCo@CF electrode exhibited rapid reactivity with PMS,generating reactive oxygen species that efficiently degrade organic pollutants.The degradation experiments indicate that complete bisphenol A(BPA)degradation was achieved within 10 min under optimal conditions.The real-time electrochemical signal was measured in time during the catalytic reaction,and a linear relationship between BPA concentration and the real-time charge(Q)was confirmed by the equation ln(C0/C)=4.393Q(correlation coefficients,R^(2)=0.998).Furthermore,experiments conducted with aureomycin and tetracycline further validated the effectiveness of the monitoring sensor.First-principles investigation confirmed the superior adsorption energy and improved electron transfer in FeCo@CF.The integration of pollutant degradation with in situ monitoring of catalytic reactions offers promising prospects for expanding the scope of the monitoring of catalytic processes and making significant contributions to environmental purification.
基金supported by China Postdoctoral Science Foundation(No.2020M670469)National Key Research and Development Program of China(No.2019YFB1803303,No.2020YFB1806702).
文摘Linear programming(LP)decoding is a classic decoding method for linear block codes,and has attracted recent researches because its potential in joint channel processing.However,for polar codes,LP decoders has long been outperformed by CRCaided successive cancellation list(CA-SCL)decoders.To increase the competitiveness of 5G NR LP polar decoding,it is possible to gain performance improvements by exploiting the cyclic redundancy check(CRC)setup.In this paper,we propose a combined scheme of reduced sparsified factor graph-sparsified CRC(RSFG-SCRC)and augmented generator matrix-CRC(AGM-CRC),for polytope generation in adaptive linear programming(ALP)decoder for 5G polar codes.Augmented generator matrix(AGM)polytope and improved maximum cycle strategy-auxiliary node pairs 4(MCS-ANP-4)algorithm are proposed,to make efficient use of CRC constraints and minimize the constraint size for the decoder.Numerical simulations show that adaptive linear programming decoders with our proposed RSFG-SCRC and AGM-CRC polytopes can achieve significantly better block error rate(BLER)performance than a benchmark CA-SCL-8 decoder especially in harsh low-to-medium SNR regions.
基金supported by the National Natural Science Foundation of China (Grant No.52122405)Science and Technology Major Project of Shanxi Province,China (Grant No.202101060301024)Science and Technology Major Project of Xizang Autonomous Region,China (Grant No.XZ202201ZD0004G0204).
文摘In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing permeability and injection-induced seismicity during hot dry rock geothermal extraction.For optimizing injection strategies and improving engineering safety,real-time permeability,deformation,and energy release characteristics of fractured granite samples driven by injected water pressure under different critical sliding conditions were evaluated.The results indicated that:(1)A low injection water pressure induced intermittent small-deformation stick-slip behavior in fractures,and a high injection pressure primarily caused continuous high-speed large-deformation sliding in fractures.The optimal injection water pressure range was defined for enhancing hydraulic shear permeability and preventing large injection-induced earthquakes.(2)Under the same experimental conditions,fracture sliding was deemed as the major factor that enhanced the hydraulic shear-permeability enhancement and the maximum permeability increased by 36.54 and 41.59 times,respectively,in above two slip modes.(3)Based on the real-time transient evolution of water pressure during fracture sliding,the variation coefficients of slip rate,permeability,and water pressure were fitted,and the results were different from those measured under quasi-static conditions.(4)The maximum and minimum shear strength criteria for injection-induced fracture sliding were also determined(μ=0.6665 andμ=0.1645,respectively,μis friction coefficient).Using the 3D(three-dimensional)fracture surface scanning technology,the weakening effect of injection pressure on fracture surface damage characteristics was determined,which provided evidence for the geological markers of fault sliding mode and sliding nature transitions under the fluid influence.
基金funded by the Ongoing Research Funding Program(ORF-2025-890)King Saud University,Riyadh,Saudi Arabia and was supported by the Competitive Research Fund of theUniversity of Aizu,Japan.
文摘The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices.
基金the financial support of the Natural Science Foundation of Hubei Province,China (Grant No.2022CFB770)。
文摘In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.
基金supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701)the National Key Research and Development Program of China(Grant No.2018YFA0306403)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43000000).
文摘Quantum key distribution(QKD)is a method for secure communication that utilizes quantum mechanics principles to distribute cryptographic keys between parties.Integrated photonics offer benefits such as compactness,scalability,energy efficiency and the potential for extensive integration.We have achieved BB84 phase encoding and decoding,time-bin phase QKD,and the coherent one-way(COW)protocol on a planar lightwave circuit(PLC)platform.At the optimal temperature,our chip successfully prepared quantum states,performed decoding and calculated the secure key rate of the time-bin phasedecoding QKD to be 80.46 kbps over a 20 km transmission with a quantum bit error rate(QBER)of 4.23%.The secure key rate of the COW protocol was 18.18 kbps,with a phase error rate of 3.627%and a time error rate of 0.377%.The uniqueness of this technology lies in its combination of high integration and protocol flexibility,providing an innovative solution for the development of future quantum communication networks.