期刊文献+
共找到25,491篇文章
< 1 2 250 >
每页显示 20 50 100
GF-3 data real-time processing method based on multi-satellite distributed data processing system 被引量:7
1
作者 YANG Jun CAO Yan-dong +2 位作者 SUN Guang-cai XING Meng-dao GUO Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期842-852,共11页
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process... Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified. 展开更多
关键词 synthetic aperture radar full-track utilization rate distributed data processing CS imaging algorithm field programmable gate array Gaofen-3
在线阅读 下载PDF
Enhancing the data processing speed of a deep-learning-based three-dimensional single molecule localization algorithm (FD-DeepLoc) with a combination of feature compression and pipeline programming
2
作者 Shuhao Guo Jiaxun Lin +1 位作者 Yingjun Zhang Zhen-Li Huang 《Journal of Innovative Optical Health Sciences》 2025年第2期150-160,共11页
Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.... Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm. 展开更多
关键词 real-time data processing feature compression pipeline programming
原文传递
Real-time image processing and display in object size detection based on VC++ 被引量:2
3
作者 翟亚宇 潘晋孝 +1 位作者 刘宾 陈平 《Journal of Measurement Science and Instrumentation》 CAS 2014年第4期40-45,共6页
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie... Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs. 展开更多
关键词 size detection real-time image processing and display gain calibration edge fitting
在线阅读 下载PDF
Enhancing IoT Resilience at the Edge:A Resource-Efficient Framework for Real-Time Anomaly Detection in Streaming Data
4
作者 Kirubavathi G. Arjun Pulliyasseri +5 位作者 Aswathi Rajesh Amal Ajayan Sultan Alfarhood Mejdl Safran Meshal Alfarhood Jungpil Shin 《Computer Modeling in Engineering & Sciences》 2025年第6期3005-3031,共27页
The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability... The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices. 展开更多
关键词 Anomaly detection streaming data IOT IIoT TMoT real-time LIGHTWEIGHT modeling
在线阅读 下载PDF
Basic processing of the InSight seismic data from Mars for further seismological research
5
作者 Shuguang Wang Shuoxian Ning +4 位作者 Zhixiang Yao Jiaqi Li Wanbo Xiao Tianfan Yan Feng Xu 《Earthquake Science》 2025年第5期450-460,共11页
The InSight mission has obtained seismic data from Mars,offering new insights into the planet’s internal structure and seismic activity.However,the raw data released to the public contain various sources of noise,suc... The InSight mission has obtained seismic data from Mars,offering new insights into the planet’s internal structure and seismic activity.However,the raw data released to the public contain various sources of noise,such as ticks and glitches,which hamper further seismological studies.This paper presents step-by-step processing of InSight’s Very Broad Band seismic data,focusing on the suppression and removal of non-seismic noise.The processing stages include tick noise removal,glitch signal suppression,multicomponent synchronization,instrument response correction,and rotation of orthogonal components.The processed datasets and associated codes are openly accessible and will support ongoing efforts to explore the geophysical properties of Mars and contribute to the broader field of planetary seismology. 展开更多
关键词 MARS INSIGHT SEISMOLOGY data process seismic noise
在线阅读 下载PDF
Modeling and Performance Evaluation of Streaming Data Processing System in IoT Architecture
6
作者 Feng Zhu Kailin Wu Jie Ding 《Computers, Materials & Continua》 2025年第5期2573-2598,共26页
With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Alth... With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads. 展开更多
关键词 System modeling performance evaluation streaming data process IoT system PEPA
在线阅读 下载PDF
Automation and parallelization scheme to accelerate pulsar observation data processing
7
作者 Xingnan Zhang Minghui Li 《Astronomical Techniques and Instruments》 2025年第4期226-238,共13页
Previous studies aiming to accelerate data processing have focused on enhancement algorithms,using the graphics processing unit(GPU)to speed up programs,and thread-level parallelism.These methods overlook maximizing t... Previous studies aiming to accelerate data processing have focused on enhancement algorithms,using the graphics processing unit(GPU)to speed up programs,and thread-level parallelism.These methods overlook maximizing the utilization of existing central processing unit(CPU)resources and reducing human and computational time costs via process automation.Accordingly,this paper proposes a scheme,called SSM,that combines“Srun job submission mode”,“Sbatch job submission mode”,and“Monitor function”.The SSM scheme includes three main modules:data management,command management,and resource management.Its core innovations are command splitting and parallel execution.The results show that this method effectively improves CPU utilization and reduces the time required for data processing.In terms of CPU utilization,the average value of this scheme is 89%.In contrast,the average CPU utilizations of“Srun job submission mode”and“Sbatch job submission mode”are significantly lower,at 43%and 52%,respectively.In terms of the data-processing time,SSM testing on the Five-hundred-meter Aperture Spherical radio Telescope(FAST)data requires only 5.5 h,compared with 8 h in the“Srun job submission mode”and 14 h in the“Sbatch job submission mode”.In addition,tests on the FAST and Parkes datasets demonstrate the universality of the SSM scheme,which can process data from different telescopes.The compatibility of the SSM scheme for pulsar searches is verified using 2 days of observational data from the globular cluster M2,with the scheme successfully discovering all published pulsars in M2. 展开更多
关键词 Astronomical data Parallel processing PulsaR Exploration and Search TOolkit(PRESTO) CPU FAST Parkes
在线阅读 下载PDF
A review of test methods for uniaxial compressive strength of rocks:Theory,apparatus and data processing
8
作者 Wei-Qiang Xie Xiao-Li Liu +2 位作者 Xiao-Ping Zhang Quan-Sheng Liu En-ZhiWang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1889-1905,共17页
The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and ... The uniaxial compressive strength(UCS)of rocks is a vital geomechanical parameter widely used for rock mass classification,stability analysis,and engineering design in rock engineering.Various UCS testing methods and apparatuses have been proposed over the past few decades.The objective of the present study is to summarize the status and development in theories,test apparatuses,data processing of the existing testing methods for UCS measurement.It starts with elaborating the theories of these test methods.Then the test apparatus and development trends for UCS measurement are summarized,followed by a discussion on rock specimens for test apparatus,and data processing methods.Next,the method selection for UCS measurement is recommended.It reveals that the rock failure mechanism in the UCS testing methods can be divided into compression-shear,compression-tension,composite failure mode,and no obvious failure mode.The trends of these apparatuses are towards automation,digitization,precision,and multi-modal test.Two size correction methods are commonly used.One is to develop empirical correlation between the measured indices and the specimen size.The other is to use a standard specimen to calculate the size correction factor.Three to five input parameters are commonly utilized in soft computation models to predict the UCS of rocks.The selection of the test methods for the UCS measurement can be carried out according to the testing scenario and the specimen size.The engineers can gain a comprehensive understanding of the UCS testing methods and its potential developments in various rock engineering endeavors. 展开更多
关键词 Uniaxial compressive strength(UCS) UCS testing methods Test apparatus data processing
在线阅读 下载PDF
GT-scopy:A Data Processing and Enhancing Package(Level 1.0-1.5)for Ground Solar Telescopes——Based on the 1.6 m Goode Solar Telescope
9
作者 Ding Yuan Wei Wu +4 位作者 Song Feng Libo Fu Wenda Cao Jianchuan Zheng Lin Mei 《Research in Astronomy and Astrophysics》 2025年第11期191-197,共7页
The increasing demand for high-resolution solar observations has driven the development of advanced data processing and enhancement techniques for ground-based solar telescopes.This study focuses on developing a pytho... The increasing demand for high-resolution solar observations has driven the development of advanced data processing and enhancement techniques for ground-based solar telescopes.This study focuses on developing a python-based package(GT-scopy)for data processing and enhancing for giant solar telescopes,with application to the 1.6 m Goode Solar Telescope(GST)at Big Bear Solar Observatory.The objective is to develop a modern data processing software for refining existing data acquisition,processing,and enhancement methodologies to achieve atmospheric effect removal and accurate alignment at the sub-pixel level,particularly within the processing levels 1.0-1.5.In this research,we implemented an integrated and comprehensive data processing procedure that includes image de-rotation,zone-of-interest selection,coarse alignment,correction for atmospheric distortions,and fine alignment at the sub-pixel level with an advanced algorithm.The results demonstrate a significant improvement in image quality,with enhanced visibility of fine solar structures both in sunspots and quiet-Sun regions.The enhanced data processing package developed in this study significantly improves the utility of data obtained from the GST,paving the way for more precise solar research and contributing to a better understanding of solar dynamics.This package can be adapted for other ground-based solar telescopes,such as the Daniel K.Inouye Solar Telescope(DKIST),the European Solar Telescope(EST),and the 8 m Chinese Giant Solar Telescope,potentially benefiting the broader solar physics community. 展开更多
关键词 techniques:image processing methods:data analysis Astronomical Instrumentation Methods and Techniques
在线阅读 下载PDF
Multi-scale intelligent fusion and dynamic validation for high-resolution seismic data processing in drilling
10
作者 YUAN Sanyi XU Yanwu +2 位作者 XIE Renjun CHEN Shuai YUAN Junliang 《Petroleum Exploration and Development》 2025年第3期680-691,共12页
During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resol... During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency. 展开更多
关键词 high-resolution seismic data processing while-drilling update while-drilling logging multi-source information fusion thin-bed weak reflection artificial intelligence modeling
在线阅读 下载PDF
A Flexible DSP-Based Network forReal-Time Image-Processing 被引量:5
11
作者 MAOHai-cen ZHANGTian-xu JIANGHao-yang WANGYue-huan 《Wuhan University Journal of Natural Sciences》 CAS 2004年第6期921-926,共6页
This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA an... This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA and provides a bandwidth of 12. 8 Gbit/s. Using the links, The topologic of multi-DSP system can be changed online to meet the variabilities of the parallel algorithm of image processing. The system can be assembled with utmost tens of boards and maintain the high communication speed. Analysis of the system adaptivity to image processing is testified followed by actual results. Key words real-time image processing - multi-DSP - flexible - scalable - FPGA - links CLC number TP 303 Foundation item: Supported by the National Natural Science Foundation of China (60135020)Biography: MAO Hai-cen(1973-), male, Ph.D. candidate, research direction: artificial intelligence, expert system, pattern recognition and image processing 展开更多
关键词 real-time image processing MULTI-DSP FLEXIBLE SCALABLE FPGA LINKS
在线阅读 下载PDF
Improvement Design for Distributed Real-Time Stream Processing Systems 被引量:4
12
作者 Wei Jiang Liu-Gen Xu +1 位作者 Hai-Bo Hu Yue Ma 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第1期3-12,共10页
In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of ... In the era of Big Data, typical architecture of distributed real-time stream processing systems is the combination of Flume, Kafka, and Storm. As a kind of distributed message system, Kafka has the characteristics of horizontal scalability and high throughput, which is manly deployed in many areas in order to address the problem of speed mismatch between message producers and consumers. When using Kafka, we need to quickly receive data sent by producers. In addition, we need to send data to consumers quickly. Therefore, the performance of Kafka is of critical importance to the performance of the whole stream processing system. In this paper, we propose the improved design of real-time stream processing systems, and focus on improving the Kafka's data loading process.We use Kafka cat to transfer data from the source to Kafka topic directly, which can reduce the network transmission. We also utilize the memory file system to accelerate the process of data loading, which can address the bottleneck and performance problems caused by disk I/O. Extensive experiments are conducted to evaluate the performance, which show the superiority of our improved design. 展开更多
关键词 Kafka Kafka CAT memory FILE SYSTEM MESSAGE QUEUE real-time STREAM processing SYSTEM
在线阅读 下载PDF
New multi-DSP parallel computing architecture for real-time image processing 被引量:4
13
作者 Hu Junhong Zhang Tianxu Jiang Haoyang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期883-889,共7页
The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is present... The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment. 展开更多
关键词 parallel computing image processing real-time computer architecture
在线阅读 下载PDF
High Resolution Radar Real-Time Signal and Information Processing 被引量:7
14
作者 Teng Long Tao Zeng +8 位作者 Cheng Hu Xichao Dong Liang Chen Quanhua Liu Yizhuang Xie Zegang Ding Yang Li Yanhua Wang Yan Wang 《China Communications》 SCIE CSCD 2019年第2期105-133,共29页
Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detectio... Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detection and recognition of targets. With the development of ultra-wideband technology, synthetic aperture technology, signal and information processing technology, the radar coverage, detection accuracy and resolution have been greatly improved, especially in terms of one-dimensional(1D) high-resolution radar detection, tracking, recognition, and two-dimensional(2D) synthetic aperture radar imaging technology. Meanwhile, for the application of radar detection and remote sensing with high resolution and wide swath, the amount of data has been greatly increased. Therefore, the radar is required to have low-latency and real-time processing capability under the constraints of size, weight and power consumption. This paper systematically introduces the new technology of high resolution radar and real-time signal and information processing. The key problems and solutions are discussed, including the detection and tracking of 1D high-resolution radar, the accurate signal modeling and wide-swath imaging for geosynchronous orbit synthetic aperture radar, and real-time signal and information processing architecture and efficient algorithms. Finally, the latest research progress and representative results are presented, and the development trends are prospected. 展开更多
关键词 1D high resolutionradar geosynchronous synthetic aperture radar real-time signal and information processing
在线阅读 下载PDF
RFID Complex Event Processing: Applications in Real-Time Locating System 被引量:2
15
作者 Yao-zong Liu Hong Zhang Yong-li Wang 《International Journal of Intelligence Science》 2012年第4期160-165,共6页
Complex event processing (CEP) can extract meaningful events for real-time locating system (RTLS) applications. To identify complex event accurately in RTLS, we propose a new RFID complex event processing method GEEP,... Complex event processing (CEP) can extract meaningful events for real-time locating system (RTLS) applications. To identify complex event accurately in RTLS, we propose a new RFID complex event processing method GEEP, which is based on the timed automata (TA) theory. By devising RFID locating application into complex events, we model the timing diagram of RFID data streams based on the TA. We optimize the constraint of the event streams and propose a novel method to derive the constraint between objects, as well as the constraint between object and location. Experiments prove the proposed method reduces the cost of RFID complex event processing, and improves the efficiency of the RTLS. 展开更多
关键词 Complex Event processing (CEP) real-time Locating System (RTLS) Radio Frequency Identification (RFID) TIMED AUTOMATA (TA) Event-Clock AUTOMATA (ECA)
在线阅读 下载PDF
High performance reconfigurable hardware system for real-time image processing
16
作者 赵广州 张天序 +2 位作者 王岳环 曹治国 左峥嵘 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期502-509,共8页
A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-B... A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition. 展开更多
关键词 MULTI-DSP fidd programmable gate arrays real-time image processing real time operating systems parallel structure.
在线阅读 下载PDF
An FPGA-based real-time image processing system
17
作者 ZONG Dexiang HE Yonghui 《Baosteel Technical Research》 CAS 2013年第4期8-10,共3页
This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this nee... This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system. 展开更多
关键词 real-time image processing FPGA strip surface quality on-line inspection system
在线阅读 下载PDF
Low-Power Operational Amplifier for Real-Time Signal Processing System of Micro Air Vehicle
18
作者 王竹萍 仲顺安 聂丹丹 《Journal of Beijing Institute of Technology》 EI CAS 2010年第3期353-356,共4页
A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu... A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system. 展开更多
关键词 microelectromechanical system(MEMS) operational amplifier(op-amp) LOW-POWER real-time signal processing system micro air vehicle(MAV)
在线阅读 下载PDF
Real-Time Discrete Adaptive Control of Robot Arm Based on Digital Signal Processing
19
作者 龙绪明 《Journal of Southwest Jiaotong University(English Edition)》 2008年第1期24-29,共6页
A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer syste... A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity. 展开更多
关键词 ROBOT Model reference adaptive control (MRAC) Digital signal processing (DSP) real-time control
在线阅读 下载PDF
APPLICATION OF GREY SYSTEM THEORY TO PROCESSING OF MEASURING DATA IN REVERSE ENGINEERING 被引量:3
20
作者 平雪良 周儒荣 安鲁陵 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第1期36-41,共6页
The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured d... The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence. 展开更多
关键词 reverse engineering gr ey system theory DIGITIZATION data processing grey generation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部