Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain...Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively.展开更多
In the field of edge computing,achieving low-latency computational task offloading with limited resources is a critical research challenge,particularly in resource-constrained and latency-sensitive vehicular network e...In the field of edge computing,achieving low-latency computational task offloading with limited resources is a critical research challenge,particularly in resource-constrained and latency-sensitive vehicular network environments where rapid response is mandatory for safety-critical applications.In scenarios where edge servers are sparsely deployed,the lack of coordination and information sharing often leads to load imbalance,thereby increasing system latency.Furthermore,in regions without edge server coverage,tasks must be processed locally,which further exacerbates latency issues.To address these challenges,we propose a novel and efficient Deep Reinforcement Learning(DRL)-based approach aimed at minimizing average task latency.The proposed method incorporates three offloading strategies:local computation,direct offloading to the edge server in local region,and device-to-device(D2D)-assisted offloading to edge servers in other regions.We formulate the task offloading process as a complex latency minimization optimization problem.To solve it,we propose an advanced algorithm based on the Dueling Double Deep Q-Network(D3QN)architecture and incorporating the Prioritized Experience Replay(PER)mechanism.Experimental results demonstrate that,compared with existing offloading algorithms,the proposed method significantly reduces average task latency,enhances user experience,and offers an effective strategy for latency optimization in future edge computing systems under dynamic workloads.展开更多
Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based met...Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based methods,tracking on a single CPU core,or parallelizing the computation across multiple cores via the message passing interface(MPI).Although these approaches work well for single-bunch tracking,scaling them to multiple bunches significantly increases the computational load,which often necessitates the use of a dedicated multi-CPU cluster.To address this challenge,alternative methods leveraging General-Purpose computing on Graphics Processing Units(GPGPU)have been proposed,enabling tracking studies on a standalone desktop personal computer(PC).However,frequent CPU-GPU interactions,including data transfers and synchronization operations during tracking,can introduce communication overheads,potentially reducing the overall effectiveness of GPU-based computations.In this study,we propose a novel approach that eliminates this overhead by performing the entire tracking simulation process exclusively on the GPU,thereby enabling the simultaneous processing of all bunches and their macro-particles.Specifically,we introduce MBTRACK2-CUDA,a Compute Unified Device Architecture(CUDA)ported version of MBTRACK2,which facilitates efficient tracking of single-and multi-bunch collective effects by leveraging the full GPU-resident computation.展开更多
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays...As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality.展开更多
Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and v...Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and viable quantum algorithms for simulating large-scale materials are still limited.We propose and implement random-state quantum algorithms to calculate electronic-structure properties of real materials.Using a random state circuit on a small number of qubits,we employ real-time evolution with first-order Trotter decomposition and Hadamard test to obtain electronic density of states,and we develop a modified quantum phase estimation algorithm to calculate real-space local density of states via direct quantum measurements.Furthermore,we validate these algorithms by numerically computing the density of states and spatial distributions of electronic states in graphene,twisted bilayer graphene quasicrystals,and fractal lattices,covering system sizes from hundreds to thousands of atoms.Our results manifest that the random-state quantum algorithms provide a general and qubit-efficient route to scalable simulations of electronic properties in large-scale periodic and aperiodic materials.展开更多
A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear ph...A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.展开更多
BACKGROUND Early detection of precancerous lesions is of vital importance for reducing the incidence and mortality of upper gastrointestinal(UGI)tract cancer.However,traditional endoscopy has certain limitations in de...BACKGROUND Early detection of precancerous lesions is of vital importance for reducing the incidence and mortality of upper gastrointestinal(UGI)tract cancer.However,traditional endoscopy has certain limitations in detecting precancerous lesions.In contrast,real-time computer-aided detection(CAD)systems enhanced by artificial intelligence(AI)systems,although they may increase unnecessary medical procedures,can provide immediate feedback during examination,thereby improving the accuracy of lesion detection.This article aims to conduct a meta-analysis of the diagnostic performance of CAD systems in identifying precancerous lesions of UGI tract cancer during esophagogastroduodenoscopy(EGD),evaluate their potential clinical application value,and determine the direction for further research.AIM To investigate the improvement of the efficiency of EGD examination by the realtime AI-enabled real-time CAD system(AI-CAD)system.METHODS PubMed,EMBASE,Web of Science and Cochrane Library databases were searched by two independent reviewers to retrieve literature with per-patient analysis with a deadline up until April 2025.A meta-analysis was performed with R Studio software(R4.5.0).A random-effects model was used and subgroup analysis was carried out to identify possible sources of heterogeneity.RESULTS The initial search identified 802 articles.According to the inclusion criteria,2113 patients from 10 studies were included in this meta-analysis.The pooled accuracy difference,logarithmic difference of diagnostic odds ratios,sensitivity,specificity and the area under the summary receiver operating characteristic curve(area under the curve)of both AI group and endoscopist group for detecting precancerous lesion were 0.16(95%CI:0.12-0.20),-0.19(95%CI:-0.75-0.37),0.89(95%CI:0.85-0.92,AI group),0.67(95%CI:0.63-0.71,endoscopist group),0.89(95%CI:0.84-0.93,AI group),0.77(95%CI:0.70-0.83,endoscopist group),0.928(95%CI:0.841-0.948,AI group),0.722(95%CI:0.677-0.821,endoscopist group),respectively.CONCLUSION The present studies further provide evidence that the AI-CAD is a reliable endoscopic diagnostic tool that can be used to assist endoscopists in detection of precancerous lesions in the UGI tract.It may be introduced on a large scale for clinical application to enhance the accuracy of detecting precancerous lesions in the UGI tract.展开更多
Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response ...Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion,bearings,and superstructure.Therefore,dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy.Moreover,bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects,especially under extreme loading conditions.Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols.The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests.These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses.Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements.Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks.Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors.Overall,this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response.展开更多
Model predictive control (MPC) could not be deployed in real-time control systems for its computation time is not well defined. A real-time fault tolerant implementation algorithm based on imprecise computation is pro...Model predictive control (MPC) could not be deployed in real-time control systems for its computation time is not well defined. A real-time fault tolerant implementation algorithm based on imprecise computation is proposed for MPC, according to the solving process of quadratic programming (QP) problem. In this algorithm, system stability is guaranteed even when computation resource is not enough to finish optimization completely. By this kind of graceful degradation, the behavior of real-time control systems is still predictable and determinate. The algorithm is demonstrated by experiments on servomotor, and the simulation results show its effectiveness.展开更多
In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the con...In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the controlled errors is analyzed. The stability analysis is done for a model problem, and the stability region is ploted which gives the range of the sampling stepsizes with which the stability of control process is guaranteed.展开更多
A simple analytical real-time capable model to account for fuselage-induced velocities at rotor blade elements is described at the example of the Bo105 fuselage.Data of the fuselage-induced flow fields in the volume o...A simple analytical real-time capable model to account for fuselage-induced velocities at rotor blade elements is described at the example of the Bo105 fuselage.Data of the fuselage-induced flow fields in the volume of rotor operation above the fuselage are first computed by a panel method in the range of angle of attack and sideslip of±90°.The model parameters are then estimated based on these data.The usefulness of the model in combinations of angle of attack and sideslip is demonstrated.展开更多
The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical r...The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable.展开更多
The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is present...The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.展开更多
This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition...This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.展开更多
Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective meas...Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering.展开更多
The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a samp...The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs.展开更多
The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for he...The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.展开更多
In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this neces...In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks.展开更多
In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML...In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel.展开更多
基金supported by Key Science and Technology Program of Henan Province,China(Grant Nos.242102210147,242102210027)Fujian Province Young and Middle aged Teacher Education Research Project(Science and Technology Category)(No.JZ240101)(Corresponding author:Dong Yuan).
文摘Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively.
基金supported by the National Natural Science Foundation of China(62202215)Liaoning Province Applied Basic Research Program(Youth Special Project,2023JH2/101600038)+4 种基金Shenyang Youth Science and Technology Innovation Talent Support Program(RC220458)Guangxuan Program of Shenyang Ligong University(SYLUGXRC202216)the Basic Research Special Funds for Undergraduate Universities in Liaoning Province(LJ212410144067)the Natural Science Foundation of Liaoning Province(2024-MS-113)the science and technology funds from Liaoning Education Department(LJKZ0242).
文摘In the field of edge computing,achieving low-latency computational task offloading with limited resources is a critical research challenge,particularly in resource-constrained and latency-sensitive vehicular network environments where rapid response is mandatory for safety-critical applications.In scenarios where edge servers are sparsely deployed,the lack of coordination and information sharing often leads to load imbalance,thereby increasing system latency.Furthermore,in regions without edge server coverage,tasks must be processed locally,which further exacerbates latency issues.To address these challenges,we propose a novel and efficient Deep Reinforcement Learning(DRL)-based approach aimed at minimizing average task latency.The proposed method incorporates three offloading strategies:local computation,direct offloading to the edge server in local region,and device-to-device(D2D)-assisted offloading to edge servers in other regions.We formulate the task offloading process as a complex latency minimization optimization problem.To solve it,we propose an advanced algorithm based on the Dueling Double Deep Q-Network(D3QN)architecture and incorporating the Prioritized Experience Replay(PER)mechanism.Experimental results demonstrate that,compared with existing offloading algorithms,the proposed method significantly reduces average task latency,enhances user experience,and offers an effective strategy for latency optimization in future edge computing systems under dynamic workloads.
基金supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)(No.RS-2022-00143178)the Ministry of Education(MOE)(Nos.2022R1A6A3A13053896 and 2022R1F1A1074616),Republic of Korea.
文摘Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based methods,tracking on a single CPU core,or parallelizing the computation across multiple cores via the message passing interface(MPI).Although these approaches work well for single-bunch tracking,scaling them to multiple bunches significantly increases the computational load,which often necessitates the use of a dedicated multi-CPU cluster.To address this challenge,alternative methods leveraging General-Purpose computing on Graphics Processing Units(GPGPU)have been proposed,enabling tracking studies on a standalone desktop personal computer(PC).However,frequent CPU-GPU interactions,including data transfers and synchronization operations during tracking,can introduce communication overheads,potentially reducing the overall effectiveness of GPU-based computations.In this study,we propose a novel approach that eliminates this overhead by performing the entire tracking simulation process exclusively on the GPU,thereby enabling the simultaneous processing of all bunches and their macro-particles.Specifically,we introduce MBTRACK2-CUDA,a Compute Unified Device Architecture(CUDA)ported version of MBTRACK2,which facilitates efficient tracking of single-and multi-bunch collective effects by leveraging the full GPU-resident computation.
基金supported by Youth Talent Project of Scientific Research Program of Hubei Provincial Department of Education under Grant Q20241809Doctoral Scientific Research Foundation of Hubei University of Automotive Technology under Grant 202404.
文摘As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality.
基金supported by the Major Project for the Integration of ScienceEducation and Industry (Grant No.2025ZDZX02)。
文摘Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and viable quantum algorithms for simulating large-scale materials are still limited.We propose and implement random-state quantum algorithms to calculate electronic-structure properties of real materials.Using a random state circuit on a small number of qubits,we employ real-time evolution with first-order Trotter decomposition and Hadamard test to obtain electronic density of states,and we develop a modified quantum phase estimation algorithm to calculate real-space local density of states via direct quantum measurements.Furthermore,we validate these algorithms by numerically computing the density of states and spatial distributions of electronic states in graphene,twisted bilayer graphene quasicrystals,and fractal lattices,covering system sizes from hundreds to thousands of atoms.Our results manifest that the random-state quantum algorithms provide a general and qubit-efficient route to scalable simulations of electronic properties in large-scale periodic and aperiodic materials.
基金NSERC Discovery under Grant 371627-2009 and NSERC RTI under Grant 374707-2009 EQPEQ programs
文摘A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermal- mechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.
文摘BACKGROUND Early detection of precancerous lesions is of vital importance for reducing the incidence and mortality of upper gastrointestinal(UGI)tract cancer.However,traditional endoscopy has certain limitations in detecting precancerous lesions.In contrast,real-time computer-aided detection(CAD)systems enhanced by artificial intelligence(AI)systems,although they may increase unnecessary medical procedures,can provide immediate feedback during examination,thereby improving the accuracy of lesion detection.This article aims to conduct a meta-analysis of the diagnostic performance of CAD systems in identifying precancerous lesions of UGI tract cancer during esophagogastroduodenoscopy(EGD),evaluate their potential clinical application value,and determine the direction for further research.AIM To investigate the improvement of the efficiency of EGD examination by the realtime AI-enabled real-time CAD system(AI-CAD)system.METHODS PubMed,EMBASE,Web of Science and Cochrane Library databases were searched by two independent reviewers to retrieve literature with per-patient analysis with a deadline up until April 2025.A meta-analysis was performed with R Studio software(R4.5.0).A random-effects model was used and subgroup analysis was carried out to identify possible sources of heterogeneity.RESULTS The initial search identified 802 articles.According to the inclusion criteria,2113 patients from 10 studies were included in this meta-analysis.The pooled accuracy difference,logarithmic difference of diagnostic odds ratios,sensitivity,specificity and the area under the summary receiver operating characteristic curve(area under the curve)of both AI group and endoscopist group for detecting precancerous lesion were 0.16(95%CI:0.12-0.20),-0.19(95%CI:-0.75-0.37),0.89(95%CI:0.85-0.92,AI group),0.67(95%CI:0.63-0.71,endoscopist group),0.89(95%CI:0.84-0.93,AI group),0.77(95%CI:0.70-0.83,endoscopist group),0.928(95%CI:0.841-0.948,AI group),0.722(95%CI:0.677-0.821,endoscopist group),respectively.CONCLUSION The present studies further provide evidence that the AI-CAD is a reliable endoscopic diagnostic tool that can be used to assist endoscopists in detection of precancerous lesions in the UGI tract.It may be introduced on a large scale for clinical application to enhance the accuracy of detecting precancerous lesions in the UGI tract.
文摘Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion,bearings,and superstructure.Therefore,dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy.Moreover,bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects,especially under extreme loading conditions.Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols.The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests.These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses.Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements.Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks.Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors.Overall,this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response.
文摘Model predictive control (MPC) could not be deployed in real-time control systems for its computation time is not well defined. A real-time fault tolerant implementation algorithm based on imprecise computation is proposed for MPC, according to the solving process of quadratic programming (QP) problem. In this algorithm, system stability is guaranteed even when computation resource is not enough to finish optimization completely. By this kind of graceful degradation, the behavior of real-time control systems is still predictable and determinate. The algorithm is demonstrated by experiments on servomotor, and the simulation results show its effectiveness.
文摘In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the controlled errors is analyzed. The stability analysis is done for a model problem, and the stability region is ploted which gives the range of the sampling stepsizes with which the stability of control process is guaranteed.
文摘A simple analytical real-time capable model to account for fuselage-induced velocities at rotor blade elements is described at the example of the Bo105 fuselage.Data of the fuselage-induced flow fields in the volume of rotor operation above the fuselage are first computed by a panel method in the range of angle of attack and sideslip of±90°.The model parameters are then estimated based on these data.The usefulness of the model in combinations of angle of attack and sideslip is demonstrated.
文摘The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable.
基金This project was supported by the National Natural Science Foundation of China (60135020).
文摘The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.
基金The National Natural Science Foundation of China (91438203,91638301,91438111,41601476).
文摘This paper focuses on the time efficiency for machine vision and intelligent photogrammetry, especially high accuracy on-board real-time cloud detection method. With the development of technology, the data acquisition ability is growing continuously and the volume of raw data is increasing explosively. Meanwhile, because of the higher requirement of data accuracy, the computation load is also becoming heavier. This situation makes time efficiency extremely important. Moreover, the cloud cover rate of optical satellite imagery is up to approximately 50%, which is seriously restricting the applications of on-board intelligent photogrammetry services. To meet the on-board cloud detection requirements and offer valid input data to subsequent processing, this paper presents a stream-computing of high accuracy on-board real-time cloud detection solution which follows the “bottom-up” understanding strategy of machine vision and uses multiple embedded GPU with significant potential to be applied on-board. Without external memory, the data parallel pipeline system based on multiple processing modules of this solution could afford the “stream-in, processing, stream-out” real-time stream computing. In experiments, images of GF-2 satellite are used to validate the accuracy and performance of this approach, and the experimental results show that this solution could not only bring up cloud detection accuracy, but also match the on-board real-time processing requirements.
基金supported by the National Natural Science Founion of China(U2241285).
文摘Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering.
基金the National Natural Science Foundation of China(Nos.52122402,12172334,52034010,52174051)Shandong Provincial Natural Science Foundation(Nos.ZR2021ME029,ZR2022JQ23)Fundamental Research Funds for the Central Universities(No.22CX01001A-4)。
文摘The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs.
基金funded by the ICT Division of theMinistry of Posts,Telecommunications,and Information Technology of Bangladesh under Grant Number 56.00.0000.052.33.005.21-7(Tracking No.22FS15306)support from the University of Rajshahi.
文摘The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.
基金supported by the National Key Research and Development Program of China(No.2021YFB2900504).
文摘In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks.
文摘In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel.