A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of hu...A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems.展开更多
A co-evolutional immune algorithm for the optimization of a function with real parameters is de-scribed.It uses a cooperative co-evolution of two populations,one is a population of antibodies and theother is a populat...A co-evolutional immune algorithm for the optimization of a function with real parameters is de-scribed.It uses a cooperative co-evolution of two populations,one is a population of antibodies and theother is a population of successful mutation vectors.These two population evolve together to improve thediversity of the antibodies.The algorithm described is then tested on a suite of optimization problems.The results show that on most of test functions,this algorithm can converge to the global optimum atquicker rate in a given range,the performance of optimization is improved effetely.展开更多
基金supported by the Doctor Students Innovation Foundation of Southwest Jiaotong University.
文摘A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems.
基金Supported by the National Fundamental Research Project(A1420060159)
文摘A co-evolutional immune algorithm for the optimization of a function with real parameters is de-scribed.It uses a cooperative co-evolution of two populations,one is a population of antibodies and theother is a population of successful mutation vectors.These two population evolve together to improve thediversity of the antibodies.The algorithm described is then tested on a suite of optimization problems.The results show that on most of test functions,this algorithm can converge to the global optimum atquicker rate in a given range,the performance of optimization is improved effetely.