Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does no...Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems.展开更多
The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for he...The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.展开更多
The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability...The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices.展开更多
The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solution...The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solutions are needed to improve efficiency, resilience, and environmental performance. This paper reviews the integration of Digital Twin (DT) technologies and Machine Learning (ML) for optimizing energy management in smart buildings connected to smart grids. A key enabler of this integration is the Internet of Things (IoT), which provides the sensor networks and real-time data streams that fee/d DT–ML frameworks, enabling accurate monitoring, forecasting, and adaptive control. Through this synergy, DT–ML systems enhance energy prediction, occupant comfort, and automated fault detection, while also supporting broader sustainability goals. The review examines recent advances in DT–ML energy systems, with attention to enabling technologies such as IoT sensor networks, building energy management systems, edge–cloud computing, and advanced analytics. Key challenges including data interoperability, cybersecurity, scalability, and the need for standardized frameworks are critically discussed, along with emerging solutions such as federated learning and blockchain. Special focus is given to human-centric digital twin frameworks that integrate user comfort and behavioral adaptation into energy optimization strategies. The findings suggest that DT–ML integration, enabled by IoT sensor networks, has the potential to significantly reduce energy consumption, lower operational costs, and improve resilience in urban infrastructures. The paper concludes by outlining future research priorities, including decentralized learning models, universal data standards, enhanced privacy protocols, and expanding digital twin applications for distributed renewable energy resources.展开更多
Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness...Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness are easily affected by limited computing power of airborne equipment,complex aerial scenes and partial occlusion.To address the above challenges,we propose a novel drogue keypoint detection and pose measurement algorithm based on monocular vision,and realize real-time processing on airborne embedded devices.Firstly,a lightweight network is designed with structural re-parameterization to reduce computational cost and improve inference speed.And a sub-pixel level keypoints prediction head and loss functions are adopted to improve keypoint detection accuracy.Secondly,a closed-form solution of drogue pose is computed based on double spatial circles,followed by a nonlinear refinement based on Levenberg-Marquardt optimization.Both virtual simulation and physical simulation experiments have been used to test the proposed method.In the virtual simulation,the mean pixel error of the proposed method is 0.787 pixels,which is significantly superior to that of other methods.In the physical simulation,the mean relative measurement error is 0.788%,and the mean processing time is 13.65 ms on embedded devices.展开更多
People with visual impairments face substantial navigation difficulties in residential and unfamiliar indoor spaces.Neither canes nor verbal navigation systems possess adequate features to deliver real-time spatial aw...People with visual impairments face substantial navigation difficulties in residential and unfamiliar indoor spaces.Neither canes nor verbal navigation systems possess adequate features to deliver real-time spatial awareness to users.This research work represents a feasibility study for the wearable IoT-based indoor object detection assistant system architecture that employs a real-time indoor object detection approach to help visually impaired users recognize indoor objects.The system architecture includes four main layers:Wearable Internet of Things(IoT),Network,Cloud,and Indoor Object Detection Layers.The wearable hardware prototype is assembled using a Raspberry Pi 4,while the indoor object detection approach exploits YOLOv11.YOLOv11 represents the cutting edge of deep learning models optimized for both speed and accuracy in recognizing objects and powers the research prototype.In this work,we used a prototype implementation,comparative experiments,and two datasets compiled from Furniture Detection(i.e.,from Roboflow Universe)and Kaggle,which comprises 3000 images evenly distributed across three object categories,including bed,sofa,and table.In the evaluation process,the Raspberry Pi is only used for a feasibility demonstration of real-time inference performance(e.g.,latency and memory consumption)on embedded hardware.We also evaluated YOLOv11 by comparing its performance with other current methodologies,which involved a Convolutional Neural Network(CNN)(MobileNet-Single Shot MultiBox Detector(SSD))model together with the RTDETR Vision Transformer.The experimental results show that YOLOv11 stands out by reaching an average of 99.07%,98.51%,97.96%,and 98.22%for the accuracy,precision,recall,and F1-score,respectively.This feasibility study highlights the effectiveness of Raspberry Pi 4 and YOLOv11 in real-time indoor object detection,paving the way for structured user studies with visually impaired people in the future to evaluate their real-world use and impact.展开更多
Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter...Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.展开更多
In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing perme...In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing permeability and injection-induced seismicity during hot dry rock geothermal extraction.For optimizing injection strategies and improving engineering safety,real-time permeability,deformation,and energy release characteristics of fractured granite samples driven by injected water pressure under different critical sliding conditions were evaluated.The results indicated that:(1)A low injection water pressure induced intermittent small-deformation stick-slip behavior in fractures,and a high injection pressure primarily caused continuous high-speed large-deformation sliding in fractures.The optimal injection water pressure range was defined for enhancing hydraulic shear permeability and preventing large injection-induced earthquakes.(2)Under the same experimental conditions,fracture sliding was deemed as the major factor that enhanced the hydraulic shear-permeability enhancement and the maximum permeability increased by 36.54 and 41.59 times,respectively,in above two slip modes.(3)Based on the real-time transient evolution of water pressure during fracture sliding,the variation coefficients of slip rate,permeability,and water pressure were fitted,and the results were different from those measured under quasi-static conditions.(4)The maximum and minimum shear strength criteria for injection-induced fracture sliding were also determined(μ=0.6665 andμ=0.1645,respectively,μis friction coefficient).Using the 3D(three-dimensional)fracture surface scanning technology,the weakening effect of injection pressure on fracture surface damage characteristics was determined,which provided evidence for the geological markers of fault sliding mode and sliding nature transitions under the fluid influence.展开更多
The formation of a pressure relief zone is crucial for rockbust prevention during drilling pressure relief.This study investi-gates the mechanical behavior of high-stress rock under real-time drilling conditions and e...The formation of a pressure relief zone is crucial for rockbust prevention during drilling pressure relief.This study investi-gates the mechanical behavior of high-stress rock under real-time drilling conditions and elucidates the mechanism behind the creation of the pressure relief zone.Utilizing the independently developed SG4500 drilling rig,we conducted a theoreti-cal analysis of the forces acting on the drill bit.The analysis showed that cutting depth is directly proportional to real-time drilling speed,while tangential and normal forces are influenced by drilling diameter.Uniaxial compression tests on red sandstone specimens under high-stress real-time drilling conditions examined the impacts of different drilling speeds(800,400,100 r/min)and diameters(6,8,10,12 mm)on rock mechanical behavior,rockburst characteristics,crack evolution,and peak elastic strain energy.The results indicate that decreasing drilling speed and increasing drilling diameter weaken rock mechanical behavior,including peak strength,Young's modulus,rockburst characteristics,and peak elastic strain energy.Crack evolution analysis reveals that smaller drilling diameters and higher drilling speeds promote the development of far-field cracks,while larger drilling diameters and lower drilling speeds lead to crack formation around the borehole,and significantly affecting rock failure mechanisms.Theoretical analysis further confirms the correlation between crack evolution and stress distribution surrounding the drilling.Under vertical stress,the cracks near the borehole formed during real-time drilling are mainly influenced by tangential compressive and tensile stresses.Overall,this study provides a new perspective on understanding the mechanisms of drilling pressure relief for rockburst prevention.展开更多
In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the fea...In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.展开更多
Path planning is a fundamental component in robotics and game artificial intelligence that considerably influences the motion efficiency of robots and unmanned aerial vehicles,as well as the realism and immersion of v...Path planning is a fundamental component in robotics and game artificial intelligence that considerably influences the motion efficiency of robots and unmanned aerial vehicles,as well as the realism and immersion of virtual environments.However,traditional algorithms are often limited to single-objective optimization and lack real-time adaptability to dynamic environments.This study addresses these limitations through a proposed realtime dynamic multiobjective(RDMO)path-planning algorithm based on an enhanced A^(*) framework.The proposed algorithm employs a queue-based structure and composite multiheuristic functions to dynamically manage game tasks and compute optimal paths under changing-map-connectivity conditions in real time.Simulation experiments are conducted using real-world road network data and benchmarked against mainstream hybrid approaches based on genetic algorithms(GAs)and simulated annealing(SA).The results show that the computational speed of the RDMO algorithm is 88 and 73 times faster than that of the GA-and SA-based solutions,respectively,while the total planned path length is reduced by 58%and 33%,respectively.In addition,the RDMO algorithm also shows excellent responsiveness to dynamic changes in map connectivity and can achieve real-time replanning with a minimal computational overhead.The research results prove that the RDMO algorithm provides a robust and efficient solution for multiobjective path planning in games and robotics applications and has a great application potential in improving system performance and user experience in related fields in the future.展开更多
BACKGROUND Routine assessment of solid gastric emptying is challenging due to the prolonged test duration and complex meal preparation.Replacing solid test meals with easily prepared,commercially available semisolid m...BACKGROUND Routine assessment of solid gastric emptying is challenging due to the prolonged test duration and complex meal preparation.Replacing solid test meals with easily prepared,commercially available semisolid meals and shortening the test duration can significantly enhance the feasibility and practicality of gastric emptying evaluations.AIM To compare the gastric emptying and antral motility of solid vs semi-solid meals of similar volume and nutritional consistency,and to assess the feasibility of meal substitution and reduction in test duration during the solid gastric emptying assessment.METHODS Thirty healthy volunteers(17 males,age:29.4±6.0 years,body mass index:23.4±2.94 and 13 females,age:37.2±11.9 years,body mass index:22.9±4.34)underwent gastric emptying by real-time ultrasonography after a solid meal and a comparable commercially prepared semi-solid meal(each meal,total calorie 350 kcal,carbohydrates 60%,fat 30%and proteins 10%),on separate dates 1 week apart.The gastric antral area was measured at 5 minutes,15 minutes,30 minutes,45 minutes,60 minutes,90 minutes,120 minutes,150 minutes,180 minutes,210 minutes,and 240 minutes post-ingestion using a previously validated technique and compared between meals.RESULTS Mean and median antral areas,gastric emptying rates,gastric residual ratios,and motility index at each time point were almost similar between meals for up to 3 hours.At the end of 4 hours,the mean emptied percentage of the semisolid meal and solid meal was 81.1%and 70.6%,respectively.The emptying rate of the semisolid meal at 90 minutes significantly correlated with that of 240 minutes.There was no correlation between the solid meal emptying rates at 90 minutes and 240 minutes.CONCLUSION Gastric emptying,residual antral cross-sectional area and antral motility of a semisolid meal are almost similar to that of a solid meal of the same nutritional value until three hours post-ingestion.A semisolid test meal can effectively substitute a solid test meal during ultrasound assessment of gastric emptying,without compromising the validity of the results.Additionally,the ease of preparation and administration of semisolid meals enhances the overall feasibility of gastric emptying assessments.展开更多
Aiming at the problem that the traditional SRP-PHAT sound source localization method performs intensive search in a 360-degree space,resulting in high computational complexity and difficulty in meeting real-time requi...Aiming at the problem that the traditional SRP-PHAT sound source localization method performs intensive search in a 360-degree space,resulting in high computational complexity and difficulty in meeting real-time requirements,an innovative high-precision sound source localization method is proposed.This method combines the selective SRP-PHAT algorithm with real-time visual analysis.Its core innovations include using face detection to dynamically determine the scanning angle range to achieve visually guided selective scanning,distinguishing face sound sources from background noise through a sound source classification mechanism,and implementing intelligent background orientation selection to ensure comprehensive monitoring of environmental noise.Experimental results show that the method achieves a positioning accuracy of±5 degrees and a processing speed of more than 10FPS in complex real environments,and its performance is significantly better than the traditional full-angle scanning method.展开更多
In recent years,the country has spent significant workforce and material resources to prevent traffic accidents,particularly those caused by fatigued driving.The current studies mainly concentrate on driver physiologi...In recent years,the country has spent significant workforce and material resources to prevent traffic accidents,particularly those caused by fatigued driving.The current studies mainly concentrate on driver physiological signals,driving behavior,and vehicle information.However,most of the approaches are computationally intensive and inconvenient for real-time detection.Therefore,this paper designs a network that combines precision,speed and lightweight and proposes an algorithm for facial fatigue detection based on multi-feature fusion.Specifically,the face detection model takes YOLOv8(You Only Look Once version 8)as the basic framework,and replaces its backbone network with MobileNetv3.To focus on the significant regions in the image,CPCA(Channel Prior Convolution Attention)is adopted to enhance the network’s capacity for feature extraction.Meanwhile,the network training phase employs the Focal-EIOU(Focal and Efficient Intersection Over Union)loss function,which makes the network lightweight and increases the accuracy of target detection.Ultimately,the Dlib toolkit was employed to annotate 68 facial feature points.This study established an evaluation metric for facial fatigue and developed a novel fatigue detection algorithm to assess the driver’s condition.A series of comparative experiments were carried out on the self-built dataset.The suggested method’s mAP(mean Average Precision)values for object detection and fatigue detection are 96.71%and 95.75%,respectively,as well as the detection speed is 47 FPS(Frames Per Second).This method can balance the contradiction between computational complexity and model accuracy.Furthermore,it can be transplanted to NVIDIA Jetson Orin NX and quickly detect the driver’s state while maintaining a high degree of accuracy.It contributes to the development of automobile safety systems and reduces the occurrence of traffic accidents.展开更多
Combining the background of modern construction engineering site safety management,this article analyzes the real-time monitoring and alarm strategies for site construction safety under the integration of BIM and AI.T...Combining the background of modern construction engineering site safety management,this article analyzes the real-time monitoring and alarm strategies for site construction safety under the integration of BIM and AI.This includes the analysis of BIM and AI technologies and their integration advantages,real-time monitoring and alarm strategies for construction site safety based on BIM and AI integration,as well as the development direction of BIM and AI integration in real-time monitoring and alarm for construction site safety.It is hoped that through this analysis,a scientific reference can be provided for the digital and intelligent management of construction site safety,promoting the digital and intelligent development of its safety management work.展开更多
With the widespread adoption of encrypted Domain Name System(DNS)technologies such as DNS over Hyper Text Transfer Protocol Secure(HTTPS),traditional port and protocol-based traffic analysis methods have become ineffe...With the widespread adoption of encrypted Domain Name System(DNS)technologies such as DNS over Hyper Text Transfer Protocol Secure(HTTPS),traditional port and protocol-based traffic analysis methods have become ineffective.Although encrypted DNS enhances user privacy protection,it also provides concealed communication channels for malicious software,compelling detection technologies to shift towards statistical featurebased and machine learning approaches.However,these methods still face challenges in real-time performance and privacy protection.This paper proposes a real-time identification technology for encrypted DNS traffic with privacy protection.Firstly,a hierarchical architecture of cloud-edge-end collaboration is designed,incorporating task offloading strategies to balance privacy protection and identification efficiency.Secondly,a privacy-preserving federated learning mechanismbased on Federated Robust Aggregation(FedRA)is proposed,utilizingMedoid aggregation and differential privacy techniques to ensure data privacy and enhance identification accuracy.Finally,an edge offloading strategy based on a dynamic priority scheduling algorithm(DPSA)is designed to alleviate terminal burden and reduce latency.Simulation results demonstrate that the proposed technology significantly improves the accuracy and realtime performance of encrypted DNS traffic identification while protecting privacy,making it suitable for various network environments.展开更多
Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core cros...Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core crosstalk.In this paper,we demonstrate a realtime high-speed SDM transmission system over a field-deployed 7-core MCF cable using commercial 400 Gbit/s backbone optical transport network(OTN)transceivers and a network management system.The transceivers employ a high noise-tolerant quadrature phase shift keying(QPSK)modulation format with a 130 Gbaud rate,enabled by optoelectronic multi-chip module(OE-MCM)packaging.The network management system can effectively manage and monitor the performance of the 7-core SDM OTN system and promptly report failure events through alarms.Our field trial demonstrates the compatibility of uncoupled MCF with high-speed OTN transmission equipment and network management systems,supporting its future deployment in next-generation high-speed terrestrial cable transmission networks.展开更多
Deep learning-based intelligent recognition algorithms are increasingly recognized for their potential to address the labor-intensive challenge of manual pest detection.However,their deployment on mobile devices has b...Deep learning-based intelligent recognition algorithms are increasingly recognized for their potential to address the labor-intensive challenge of manual pest detection.However,their deployment on mobile devices has been constrained by high computational demands.Here,we developed GBiDC-PEST,a mobile application that incorporates an improved,lightweight detection algorithm based on the You Only Look Once(YOLO)series singlestage architecture,for real-time detection of four tiny pests(wheat mites,sugarcane aphids,wheat aphids,and rice planthoppers).GBiDC-PEST incorporates several innovative modules,including GhostNet for lightweight feature extraction and architecture optimization by reconstructing the backbone,the bi-directional feature pyramid network(BiFPN)for enhanced multiscale feature fusion,depthwise convolution(DWConv)layers to reduce computational load,and the convolutional block attention module(CBAM)to enable precise feature focus.The newly developed GBiDC-PEST was trained and validated using a multitarget agricultural tiny pest dataset(Tpest-3960)that covered various field environments.GBiDC-PEST(2.8 MB)significantly reduced the model size to only 20%of the original model size,offering a smaller size than the YOLO series(v5-v10),higher detection accuracy than YOLOv10n and v10s,and faster detection speed than v8s,v9c,v10m and v10b.In Android deployment experiments,GBiDCPEST demonstrated enhanced performance in detecting pests against complex backgrounds,and the accuracy for wheat mites and rice planthoppers was improved by 4.5-7.5%compared with the original model.The GBiDC-PEST optimization algorithm and its mobile deployment proposed in this study offer a robust technical framework for the rapid,onsite identification and localization of tiny pests.This advancement provides valuable insights for effective pest monitoring,counting,and control in various agricultural settings.展开更多
Currently,most trains are equipped with dedicated cameras for capturing pantograph videos.Pantographs are core to the high-speed-railway pantograph-catenary system,and their failure directly affects the normal operati...Currently,most trains are equipped with dedicated cameras for capturing pantograph videos.Pantographs are core to the high-speed-railway pantograph-catenary system,and their failure directly affects the normal operation of high-speed trains.However,given the complex and variable real-world operational conditions of high-speed railways,there is no real-time and robust pantograph fault-detection method capable of handling large volumes of surveillance video.Hence,it is of paramount importance to maintain real-time monitoring and analysis of pantographs.Our study presents a real-time intelligent detection technology for identifying faults in high-speed railway pantographs,utilizing a fusion of self-attention and convolution features.We delved into lightweight multi-scale feature-extraction and fault-detection models based on deep learning to detect pantograph anomalies.Compared with traditional methods,this approach achieves high recall and accuracy in pantograph recognition,accurately pinpointing issues like discharge sparks,pantograph horns,and carbon pantograph-slide malfunctions.After experimentation and validation with actual surveillance videos of electric multiple-unit train,our algorithmic model demonstrates real-time,high-accuracy performance even under complex operational conditions.展开更多
Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation...Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance.展开更多
文摘Along with process control,perception represents the main function performed by the Edge Layer of an Internet of Things(IoT)network.Many of these networks implement various applications where the response time does not represent an important parameter.However,in critical applications,this parameter represents a crucial aspect.One important sensing device used in IoT designs is the accelerometer.In most applications,the response time of the embedded driver software handling this device is generally not analysed and not taken into account.In this paper,we present the design and implementation of a predictable real-time driver stack for a popular accelerometer and gyroscope device family.We provide clear justifications for why this response time is extremely important for critical applications in the acquisition process of such data.We present extensive measurements and experimental results that demonstrate the predictability of our solution,making it suitable for critical real-time systems.
基金funded by the ICT Division of theMinistry of Posts,Telecommunications,and Information Technology of Bangladesh under Grant Number 56.00.0000.052.33.005.21-7(Tracking No.22FS15306)support from the University of Rajshahi.
文摘The Internet of Things(IoT)and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients.Recognizing Medical-Related Human Activities(MRHA)is pivotal for healthcare systems,particularly for identifying actions critical to patient well-being.However,challenges such as high computational demands,low accuracy,and limited adaptability persist in Human Motion Recognition(HMR).While some studies have integrated HMR with IoT for real-time healthcare applications,limited research has focused on recognizing MRHA as essential for effective patient monitoring.This study proposes a novel HMR method tailored for MRHA detection,leveraging multi-stage deep learning techniques integrated with IoT.The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions(MBConv)blocks,followed by Convolutional Long Short Term Memory(ConvLSTM)to capture spatio-temporal patterns.A classification module with global average pooling,a fully connected layer,and a dropout layer generates the final predictions.The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets,focusing on MRHA such as sneezing,falling,walking,sitting,etc.It achieves 94.85%accuracy for cross-subject evaluations and 96.45%for cross-view evaluations on NTU RGB+D 120,along with 89.22%accuracy on HMDB51.Additionally,the system integrates IoT capabilities using a Raspberry Pi and GSM module,delivering real-time alerts via Twilios SMS service to caregivers and patients.This scalable and efficient solution bridges the gap between HMR and IoT,advancing patient monitoring,improving healthcare outcomes,and reducing costs.
基金funded by the Ongoing Research Funding Program(ORF-2025-890)King Saud University,Riyadh,Saudi Arabia and was supported by the Competitive Research Fund of theUniversity of Aizu,Japan.
文摘The exponential expansion of the Internet of Things(IoT),Industrial Internet of Things(IIoT),and Transportation Management of Things(TMoT)produces vast amounts of real-time streaming data.Ensuring system dependability,operational efficiency,and security depends on the identification of anomalies in these dynamic and resource-constrained systems.Due to their high computational requirements and inability to efficiently process continuous data streams,traditional anomaly detection techniques often fail in IoT systems.This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems.Extensive experiments were carried out on multiple real-world datasets,achieving an average accuracy score of 96.06%with an execution time close to 7.5 milliseconds for each individual streaming data point,demonstrating its potential for real-time,resourceconstrained applications.The model uses Principal Component Analysis(PCA)for dimensionality reduction and a Z-score technique for anomaly detection.It maintains a low computational footprint with a sliding window mechanism,enabling incremental data processing and identification of both transient and sustained anomalies without storing historical data.The system uses a Multivariate Linear Regression(MLR)based imputation technique that estimates missing or corrupted sensor values,preserving data integrity prior to anomaly detection.The suggested solution is appropriate for many uses in smart cities,industrial automation,environmental monitoring,IoT security,and intelligent transportation systems,and is particularly well-suited for resource-constrained edge devices.
文摘The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solutions are needed to improve efficiency, resilience, and environmental performance. This paper reviews the integration of Digital Twin (DT) technologies and Machine Learning (ML) for optimizing energy management in smart buildings connected to smart grids. A key enabler of this integration is the Internet of Things (IoT), which provides the sensor networks and real-time data streams that fee/d DT–ML frameworks, enabling accurate monitoring, forecasting, and adaptive control. Through this synergy, DT–ML systems enhance energy prediction, occupant comfort, and automated fault detection, while also supporting broader sustainability goals. The review examines recent advances in DT–ML energy systems, with attention to enabling technologies such as IoT sensor networks, building energy management systems, edge–cloud computing, and advanced analytics. Key challenges including data interoperability, cybersecurity, scalability, and the need for standardized frameworks are critically discussed, along with emerging solutions such as federated learning and blockchain. Special focus is given to human-centric digital twin frameworks that integrate user comfort and behavioral adaptation into energy optimization strategies. The findings suggest that DT–ML integration, enabled by IoT sensor networks, has the potential to significantly reduce energy consumption, lower operational costs, and improve resilience in urban infrastructures. The paper concludes by outlining future research priorities, including decentralized learning models, universal data standards, enhanced privacy protocols, and expanding digital twin applications for distributed renewable energy resources.
基金supported by the National Science Fund for Distinguished Young Scholars,China(No.51625501)Aeronautical Science Foundation of China(No.20240046051002)National Natural Science Foundation of China(No.52005028).
文摘Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness are easily affected by limited computing power of airborne equipment,complex aerial scenes and partial occlusion.To address the above challenges,we propose a novel drogue keypoint detection and pose measurement algorithm based on monocular vision,and realize real-time processing on airborne embedded devices.Firstly,a lightweight network is designed with structural re-parameterization to reduce computational cost and improve inference speed.And a sub-pixel level keypoints prediction head and loss functions are adopted to improve keypoint detection accuracy.Secondly,a closed-form solution of drogue pose is computed based on double spatial circles,followed by a nonlinear refinement based on Levenberg-Marquardt optimization.Both virtual simulation and physical simulation experiments have been used to test the proposed method.In the virtual simulation,the mean pixel error of the proposed method is 0.787 pixels,which is significantly superior to that of other methods.In the physical simulation,the mean relative measurement error is 0.788%,and the mean processing time is 13.65 ms on embedded devices.
基金funded by the King Salman Center for Disability Research through Research Group No.KSRG-2024-140.
文摘People with visual impairments face substantial navigation difficulties in residential and unfamiliar indoor spaces.Neither canes nor verbal navigation systems possess adequate features to deliver real-time spatial awareness to users.This research work represents a feasibility study for the wearable IoT-based indoor object detection assistant system architecture that employs a real-time indoor object detection approach to help visually impaired users recognize indoor objects.The system architecture includes four main layers:Wearable Internet of Things(IoT),Network,Cloud,and Indoor Object Detection Layers.The wearable hardware prototype is assembled using a Raspberry Pi 4,while the indoor object detection approach exploits YOLOv11.YOLOv11 represents the cutting edge of deep learning models optimized for both speed and accuracy in recognizing objects and powers the research prototype.In this work,we used a prototype implementation,comparative experiments,and two datasets compiled from Furniture Detection(i.e.,from Roboflow Universe)and Kaggle,which comprises 3000 images evenly distributed across three object categories,including bed,sofa,and table.In the evaluation process,the Raspberry Pi is only used for a feasibility demonstration of real-time inference performance(e.g.,latency and memory consumption)on embedded hardware.We also evaluated YOLOv11 by comparing its performance with other current methodologies,which involved a Convolutional Neural Network(CNN)(MobileNet-Single Shot MultiBox Detector(SSD))model together with the RTDETR Vision Transformer.The experimental results show that YOLOv11 stands out by reaching an average of 99.07%,98.51%,97.96%,and 98.22%for the accuracy,precision,recall,and F1-score,respectively.This feasibility study highlights the effectiveness of Raspberry Pi 4 and YOLOv11 in real-time indoor object detection,paving the way for structured user studies with visually impaired people in the future to evaluate their real-world use and impact.
文摘Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.
基金supported by the National Natural Science Foundation of China (Grant No.52122405)Science and Technology Major Project of Shanxi Province,China (Grant No.202101060301024)Science and Technology Major Project of Xizang Autonomous Region,China (Grant No.XZ202201ZD0004G0204).
文摘In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing permeability and injection-induced seismicity during hot dry rock geothermal extraction.For optimizing injection strategies and improving engineering safety,real-time permeability,deformation,and energy release characteristics of fractured granite samples driven by injected water pressure under different critical sliding conditions were evaluated.The results indicated that:(1)A low injection water pressure induced intermittent small-deformation stick-slip behavior in fractures,and a high injection pressure primarily caused continuous high-speed large-deformation sliding in fractures.The optimal injection water pressure range was defined for enhancing hydraulic shear permeability and preventing large injection-induced earthquakes.(2)Under the same experimental conditions,fracture sliding was deemed as the major factor that enhanced the hydraulic shear-permeability enhancement and the maximum permeability increased by 36.54 and 41.59 times,respectively,in above two slip modes.(3)Based on the real-time transient evolution of water pressure during fracture sliding,the variation coefficients of slip rate,permeability,and water pressure were fitted,and the results were different from those measured under quasi-static conditions.(4)The maximum and minimum shear strength criteria for injection-induced fracture sliding were also determined(μ=0.6665 andμ=0.1645,respectively,μis friction coefficient).Using the 3D(three-dimensional)fracture surface scanning technology,the weakening effect of injection pressure on fracture surface damage characteristics was determined,which provided evidence for the geological markers of fault sliding mode and sliding nature transitions under the fluid influence.
基金supported by the National Natural Science Foundation of China(42077244)the Open Research Fund of Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization(2020-05)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_0434).
文摘The formation of a pressure relief zone is crucial for rockbust prevention during drilling pressure relief.This study investi-gates the mechanical behavior of high-stress rock under real-time drilling conditions and elucidates the mechanism behind the creation of the pressure relief zone.Utilizing the independently developed SG4500 drilling rig,we conducted a theoreti-cal analysis of the forces acting on the drill bit.The analysis showed that cutting depth is directly proportional to real-time drilling speed,while tangential and normal forces are influenced by drilling diameter.Uniaxial compression tests on red sandstone specimens under high-stress real-time drilling conditions examined the impacts of different drilling speeds(800,400,100 r/min)and diameters(6,8,10,12 mm)on rock mechanical behavior,rockburst characteristics,crack evolution,and peak elastic strain energy.The results indicate that decreasing drilling speed and increasing drilling diameter weaken rock mechanical behavior,including peak strength,Young's modulus,rockburst characteristics,and peak elastic strain energy.Crack evolution analysis reveals that smaller drilling diameters and higher drilling speeds promote the development of far-field cracks,while larger drilling diameters and lower drilling speeds lead to crack formation around the borehole,and significantly affecting rock failure mechanisms.Theoretical analysis further confirms the correlation between crack evolution and stress distribution surrounding the drilling.Under vertical stress,the cracks near the borehole formed during real-time drilling are mainly influenced by tangential compressive and tensile stresses.Overall,this study provides a new perspective on understanding the mechanisms of drilling pressure relief for rockburst prevention.
基金the financial support of the Natural Science Foundation of Hubei Province,China (Grant No.2022CFB770)。
文摘In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2023R1A2C1005950).
文摘Path planning is a fundamental component in robotics and game artificial intelligence that considerably influences the motion efficiency of robots and unmanned aerial vehicles,as well as the realism and immersion of virtual environments.However,traditional algorithms are often limited to single-objective optimization and lack real-time adaptability to dynamic environments.This study addresses these limitations through a proposed realtime dynamic multiobjective(RDMO)path-planning algorithm based on an enhanced A^(*) framework.The proposed algorithm employs a queue-based structure and composite multiheuristic functions to dynamically manage game tasks and compute optimal paths under changing-map-connectivity conditions in real time.Simulation experiments are conducted using real-world road network data and benchmarked against mainstream hybrid approaches based on genetic algorithms(GAs)and simulated annealing(SA).The results show that the computational speed of the RDMO algorithm is 88 and 73 times faster than that of the GA-and SA-based solutions,respectively,while the total planned path length is reduced by 58%and 33%,respectively.In addition,the RDMO algorithm also shows excellent responsiveness to dynamic changes in map connectivity and can achieve real-time replanning with a minimal computational overhead.The research results prove that the RDMO algorithm provides a robust and efficient solution for multiobjective path planning in games and robotics applications and has a great application potential in improving system performance and user experience in related fields in the future.
基金Supported by the University of Kelaniya Grant,No.RP/03/04/11/01/2011.
文摘BACKGROUND Routine assessment of solid gastric emptying is challenging due to the prolonged test duration and complex meal preparation.Replacing solid test meals with easily prepared,commercially available semisolid meals and shortening the test duration can significantly enhance the feasibility and practicality of gastric emptying evaluations.AIM To compare the gastric emptying and antral motility of solid vs semi-solid meals of similar volume and nutritional consistency,and to assess the feasibility of meal substitution and reduction in test duration during the solid gastric emptying assessment.METHODS Thirty healthy volunteers(17 males,age:29.4±6.0 years,body mass index:23.4±2.94 and 13 females,age:37.2±11.9 years,body mass index:22.9±4.34)underwent gastric emptying by real-time ultrasonography after a solid meal and a comparable commercially prepared semi-solid meal(each meal,total calorie 350 kcal,carbohydrates 60%,fat 30%and proteins 10%),on separate dates 1 week apart.The gastric antral area was measured at 5 minutes,15 minutes,30 minutes,45 minutes,60 minutes,90 minutes,120 minutes,150 minutes,180 minutes,210 minutes,and 240 minutes post-ingestion using a previously validated technique and compared between meals.RESULTS Mean and median antral areas,gastric emptying rates,gastric residual ratios,and motility index at each time point were almost similar between meals for up to 3 hours.At the end of 4 hours,the mean emptied percentage of the semisolid meal and solid meal was 81.1%and 70.6%,respectively.The emptying rate of the semisolid meal at 90 minutes significantly correlated with that of 240 minutes.There was no correlation between the solid meal emptying rates at 90 minutes and 240 minutes.CONCLUSION Gastric emptying,residual antral cross-sectional area and antral motility of a semisolid meal are almost similar to that of a solid meal of the same nutritional value until three hours post-ingestion.A semisolid test meal can effectively substitute a solid test meal during ultrasound assessment of gastric emptying,without compromising the validity of the results.Additionally,the ease of preparation and administration of semisolid meals enhances the overall feasibility of gastric emptying assessments.
基金the research result of the 2024 Guangxi Higher Education Undergraduate Teaching Reform Project“OBE-Guided,Digitally Empowered‘Hadoop Big Data Development Technology’Course Ideological and Political Construction Innovation Exploration and Practice”(Project No.:2024JGA396).
文摘Aiming at the problem that the traditional SRP-PHAT sound source localization method performs intensive search in a 360-degree space,resulting in high computational complexity and difficulty in meeting real-time requirements,an innovative high-precision sound source localization method is proposed.This method combines the selective SRP-PHAT algorithm with real-time visual analysis.Its core innovations include using face detection to dynamically determine the scanning angle range to achieve visually guided selective scanning,distinguishing face sound sources from background noise through a sound source classification mechanism,and implementing intelligent background orientation selection to ensure comprehensive monitoring of environmental noise.Experimental results show that the method achieves a positioning accuracy of±5 degrees and a processing speed of more than 10FPS in complex real environments,and its performance is significantly better than the traditional full-angle scanning method.
基金supported by the Science and Technology Bureau of Xi’an project(24KGDW0049)the Key Research and Development Programof Shaanxi(2023-YBGY-264)the Key Research and Development Program of Guangxi(GK-AB20159032).
文摘In recent years,the country has spent significant workforce and material resources to prevent traffic accidents,particularly those caused by fatigued driving.The current studies mainly concentrate on driver physiological signals,driving behavior,and vehicle information.However,most of the approaches are computationally intensive and inconvenient for real-time detection.Therefore,this paper designs a network that combines precision,speed and lightweight and proposes an algorithm for facial fatigue detection based on multi-feature fusion.Specifically,the face detection model takes YOLOv8(You Only Look Once version 8)as the basic framework,and replaces its backbone network with MobileNetv3.To focus on the significant regions in the image,CPCA(Channel Prior Convolution Attention)is adopted to enhance the network’s capacity for feature extraction.Meanwhile,the network training phase employs the Focal-EIOU(Focal and Efficient Intersection Over Union)loss function,which makes the network lightweight and increases the accuracy of target detection.Ultimately,the Dlib toolkit was employed to annotate 68 facial feature points.This study established an evaluation metric for facial fatigue and developed a novel fatigue detection algorithm to assess the driver’s condition.A series of comparative experiments were carried out on the self-built dataset.The suggested method’s mAP(mean Average Precision)values for object detection and fatigue detection are 96.71%and 95.75%,respectively,as well as the detection speed is 47 FPS(Frames Per Second).This method can balance the contradiction between computational complexity and model accuracy.Furthermore,it can be transplanted to NVIDIA Jetson Orin NX and quickly detect the driver’s state while maintaining a high degree of accuracy.It contributes to the development of automobile safety systems and reduces the occurrence of traffic accidents.
基金“Research on AI-Intelligent Management Technology for Construction Safety Based on BIM Technology and Smart Construction Site Scenarios”(Project No.:KJQN202401904)“Research on Intelligent Monitoring System for Construction Quality and Safety Based on BIM and AI Technologies”(Project No.:202412608006)。
文摘Combining the background of modern construction engineering site safety management,this article analyzes the real-time monitoring and alarm strategies for site construction safety under the integration of BIM and AI.This includes the analysis of BIM and AI technologies and their integration advantages,real-time monitoring and alarm strategies for construction site safety based on BIM and AI integration,as well as the development direction of BIM and AI integration in real-time monitoring and alarm for construction site safety.It is hoped that through this analysis,a scientific reference can be provided for the digital and intelligent management of construction site safety,promoting the digital and intelligent development of its safety management work.
文摘With the widespread adoption of encrypted Domain Name System(DNS)technologies such as DNS over Hyper Text Transfer Protocol Secure(HTTPS),traditional port and protocol-based traffic analysis methods have become ineffective.Although encrypted DNS enhances user privacy protection,it also provides concealed communication channels for malicious software,compelling detection technologies to shift towards statistical featurebased and machine learning approaches.However,these methods still face challenges in real-time performance and privacy protection.This paper proposes a real-time identification technology for encrypted DNS traffic with privacy protection.Firstly,a hierarchical architecture of cloud-edge-end collaboration is designed,incorporating task offloading strategies to balance privacy protection and identification efficiency.Secondly,a privacy-preserving federated learning mechanismbased on Federated Robust Aggregation(FedRA)is proposed,utilizingMedoid aggregation and differential privacy techniques to ensure data privacy and enhance identification accuracy.Finally,an edge offloading strategy based on a dynamic priority scheduling algorithm(DPSA)is designed to alleviate terminal burden and reduce latency.Simulation results demonstrate that the proposed technology significantly improves the accuracy and realtime performance of encrypted DNS traffic identification while protecting privacy,making it suitable for various network environments.
文摘Space-division multiplexing(SDM)utilizing uncoupled multi-core fibers(MCF)is considered a promising candidate for nextgeneration high-speed optical transmission systems due to its huge capacity and low inter-core crosstalk.In this paper,we demonstrate a realtime high-speed SDM transmission system over a field-deployed 7-core MCF cable using commercial 400 Gbit/s backbone optical transport network(OTN)transceivers and a network management system.The transceivers employ a high noise-tolerant quadrature phase shift keying(QPSK)modulation format with a 130 Gbaud rate,enabled by optoelectronic multi-chip module(OE-MCM)packaging.The network management system can effectively manage and monitor the performance of the 7-core SDM OTN system and promptly report failure events through alarms.Our field trial demonstrates the compatibility of uncoupled MCF with high-speed OTN transmission equipment and network management systems,supporting its future deployment in next-generation high-speed terrestrial cable transmission networks.
基金support of the Natural Science Foundation of Jiangsu Province,China(BK20240977)the China Scholarship Council(201606850024)+1 种基金the National High Technology Research and Development Program of China(2016YFD0701003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX23_1488)。
文摘Deep learning-based intelligent recognition algorithms are increasingly recognized for their potential to address the labor-intensive challenge of manual pest detection.However,their deployment on mobile devices has been constrained by high computational demands.Here,we developed GBiDC-PEST,a mobile application that incorporates an improved,lightweight detection algorithm based on the You Only Look Once(YOLO)series singlestage architecture,for real-time detection of four tiny pests(wheat mites,sugarcane aphids,wheat aphids,and rice planthoppers).GBiDC-PEST incorporates several innovative modules,including GhostNet for lightweight feature extraction and architecture optimization by reconstructing the backbone,the bi-directional feature pyramid network(BiFPN)for enhanced multiscale feature fusion,depthwise convolution(DWConv)layers to reduce computational load,and the convolutional block attention module(CBAM)to enable precise feature focus.The newly developed GBiDC-PEST was trained and validated using a multitarget agricultural tiny pest dataset(Tpest-3960)that covered various field environments.GBiDC-PEST(2.8 MB)significantly reduced the model size to only 20%of the original model size,offering a smaller size than the YOLO series(v5-v10),higher detection accuracy than YOLOv10n and v10s,and faster detection speed than v8s,v9c,v10m and v10b.In Android deployment experiments,GBiDCPEST demonstrated enhanced performance in detecting pests against complex backgrounds,and the accuracy for wheat mites and rice planthoppers was improved by 4.5-7.5%compared with the original model.The GBiDC-PEST optimization algorithm and its mobile deployment proposed in this study offer a robust technical framework for the rapid,onsite identification and localization of tiny pests.This advancement provides valuable insights for effective pest monitoring,counting,and control in various agricultural settings.
基金supported by the National Key R&D Program of China(No.2022YFB4301102).
文摘Currently,most trains are equipped with dedicated cameras for capturing pantograph videos.Pantographs are core to the high-speed-railway pantograph-catenary system,and their failure directly affects the normal operation of high-speed trains.However,given the complex and variable real-world operational conditions of high-speed railways,there is no real-time and robust pantograph fault-detection method capable of handling large volumes of surveillance video.Hence,it is of paramount importance to maintain real-time monitoring and analysis of pantographs.Our study presents a real-time intelligent detection technology for identifying faults in high-speed railway pantographs,utilizing a fusion of self-attention and convolution features.We delved into lightweight multi-scale feature-extraction and fault-detection models based on deep learning to detect pantograph anomalies.Compared with traditional methods,this approach achieves high recall and accuracy in pantograph recognition,accurately pinpointing issues like discharge sparks,pantograph horns,and carbon pantograph-slide malfunctions.After experimentation and validation with actual surveillance videos of electric multiple-unit train,our algorithmic model demonstrates real-time,high-accuracy performance even under complex operational conditions.
文摘Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance.