Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous...Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future.展开更多
Under the dual-carbon background,the technological updating of traditional high-energy-consuming equipment should not be delayed,and the problem of reactor energy consumption should not be ignored.Therefore,this study...Under the dual-carbon background,the technological updating of traditional high-energy-consuming equipment should not be delayed,and the problem of reactor energy consumption should not be ignored.Therefore,this study is based on computational fluid dynamics(CFD)theory to simulate the spiral stirred reactor with different design parameters(distance of paddle from bottom surface to reactor height ratio h1/H,diameter of stirring paddle to reactor diameter ratio Ds/D,length of blade section to reactor height ratio Ls/H).It was found that the reactor designed with lower Ls/H values and higher h1/H,Ds/D values would have smaller power number(Np)values and smaller flow field average velocity.In addition,this study also fitted the correlation equation of Np concerning Reynolds number and h1/H,Ds/D,and Ls/H,and the conclusions of the study can be used as a reference for the design of industrial equipment.展开更多
Electrochemical CO_(2) reduction(ECR)driven by intermittent renewable energy sources is an emerging technology to achieve net-zero CO_(2) emissions.Tandem electrochemical CO_(2) reduction(T-ECR),employs tandem catalys...Electrochemical CO_(2) reduction(ECR)driven by intermittent renewable energy sources is an emerging technology to achieve net-zero CO_(2) emissions.Tandem electrochemical CO_(2) reduction(T-ECR),employs tandem catalysts with synergistic or complementary functions to efficiently convert CO_(2) into multi-carbon(C^(2+))products in a succession of reactions within single or sequentially coupled reactors.However,the lack of clear interpretation and systematic understanding of T-ECR mechanisms has resulted in suboptimal current outcomes.This review presents new perspectives and summarizes recent advancements in efficient T-ECR across various scales,including synergistic tandem catalysis at the microscopic scale,relay tandem catalysis at the mesoscopic scale,and tandem reactors at the macroscopic scale.We begin by outlining the principle of tandem catalysis,followed by discuss on tandem catalyst design,the electrode construction,and reactor configuration.Additionally,we address the challenges and prospects of tandem strategies,emphasizing the integration of machine learning,theoretical calculations,and advanced characterization techniques for developing industry-scale CO_(2) valorization.展开更多
The advancement of clean electricity is positioning electrochemical reactors at the forefront of future electrosynthesis technologies.Solid-state electrolyte(SSE)reactors emerge for their distinctive configurations an...The advancement of clean electricity is positioning electrochemical reactors at the forefront of future electrosynthesis technologies.Solid-state electrolyte(SSE)reactors emerge for their distinctive configurations and ability to produce high-purity fuels and chemicals efficiently without additional purification steps.This marks a substantial development in electrochemical synthesis.In this perspective,we critically examine cutting-edge innovations in SSE devices with particular emphasis on the architectural introduction of core cell components,novel electrochemical cell configurations,and assembly methodologies.The use of SSE reactors is presently undergoing a pivotal transition from fundamental laboratory investigations to large-scale engineering implementations,demonstrating remarkable progress in multiple domains:(1)sustainable synthesis of high-value organic acids(formic and acetic acids),(2)production of critical oxidizers hydrogen peroxide(H_(2)O_(2))and liquid fuels(ethanol),(3)ammonia(NH_(3))production,(4)carbon capture technologies,(5)lithium recovery and recycling,and(6)tandem or coupling strategies for high-value-added products.Importantly,the transformative potential in environmental remediation,particularly for airborne pollutant sequestration and advanced wastewater purification,is addressed.Additionally,the innovative architectural blueprints for next-generation SSE stack are presented,aiming to establish a comprehensive framework to guide the transition from laboratory-scale innovation to industrial-scale deployment of SSE devices in the foreseeable future.展开更多
High flux reactors(HFRs)are a special type of research reactor aimed at providing a high neutron flux.Compared with power reactors and other research reactors,HFRs have unique technical features in terms of reactor co...High flux reactors(HFRs)are a special type of research reactor aimed at providing a high neutron flux.Compared with power reactors and other research reactors,HFRs have unique technical features in terms of reactor core design,irradiation capability,and operating characteristics.They can be applied to the irradiation tests of nuclear fuels and materials,radioisotope production,neutron science,and experiments.This paper reviews HFRs,including their development history,technical features,and application areas,as well as trends in the development of new and advanced HFRs.展开更多
Molten salt reactors(MSRs)are a promising candidate for Generation IV reactor technologies,and the small modular molten salt reactor(SM-MSR),which utilizes low-enriched uranium and thorium fuels,is regarded as a wise ...Molten salt reactors(MSRs)are a promising candidate for Generation IV reactor technologies,and the small modular molten salt reactor(SM-MSR),which utilizes low-enriched uranium and thorium fuels,is regarded as a wise development path to accelerate deployment time.Uncertainty and sensitivity analyses of accidents guide nuclear reactor design and safety analyses.Uncertainty analysis can ascertain the safety margin,and sensitivity analysis can reveal the correlation between accident consequences and input parameters.Loss of forced cooling(LOFC)represents an accident scenario of the SM-MSR,and the study of LOFC could offer useful information to improve physical thermohydraulic and structural designs.Therefore,this study investigates the uncertainty of LOFC consequences and the sensitivity of related parameters.The uncertainty of the LOFC consequences was analyzed using the Monte Carlo method,and multiple linear regression was employed to analyze the sensitivity of the input parameters.The uncertainty and sensitivity analyses showed that the maximum reactor outlet fuel salt temperature was 725.5℃,which is lower than the acceptable criterion,and five important parameters influencing LOFC consequences were identified.展开更多
Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still...Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still undesirable under certain circumstances.Encouragingly,laminar microfluidic reactor offers prospective options that possess controllable flow characteristics such as enhanced mass transport,precise laminar flow control and the ability to expand production scale progressively.In this comprehensive review,the underlying fundamentals of the paired electrosynthesis are initially summarized,followed by categorizing the paired electrosynthesis including parallel paired electrosynthesis,divergent paired electrosynthesis,convergent paired electrosynthesis,sequential paired electrosynthesis and linear paired electrosynthesis.Thereafter,a holistic overview of microfluidic reactor equipment,integral fundamentals and research methodology as well as channel extension and scale-up strategies is proposed.The established fundamentals and evaluated metrics further inspired the applications of microfluidic reactors in paired electrosynthesis.This work stimulated the overwhelming investigation of mechanism discovery,material screening strategies,and device assemblies.展开更多
Leveraging big data signal processing offers a pathway to the development of artificial intelligencedriven equipment.The analysis of fluid flow signals and the characterization of fluid flow behavior are of critical i...Leveraging big data signal processing offers a pathway to the development of artificial intelligencedriven equipment.The analysis of fluid flow signals and the characterization of fluid flow behavior are of critical in two-phase flow studies.Significant research efforts have focused on discerning flow regimes using various signal analysis methods.In this review,recent advances in time series signals analysis algorithms for stirred tank reactors have been summarized,and the detailed methodologies are categorized into the frequency domain methods,time-frequency domain methods,and state space methods.The strengths,limitations,and notable findings of each algorithm are highlighted.Additionally,the interrelationships between these methodologies have also been discussed,as well as the present progress achieved in various applications.Future research directions and challenges are also predicted to provide an overview of current research trends in data mining of time series for analyzing flow regimes and chaotic signals.This review offers a comprehensive summary for extracting and characterizing fluid flow behavior and serves as a theoretical reference for optimizing the characterization of chaotic signals in future research endeavors.展开更多
Artificial intelligence has potential for forecasting reactor conditions in the nuclear industry.Owing to economic and security concerns,a common method is to train data generated by simulators.However,achieving a sat...Artificial intelligence has potential for forecasting reactor conditions in the nuclear industry.Owing to economic and security concerns,a common method is to train data generated by simulators.However,achieving a satisfactory performance in practical applications is difficult because simulators imperfectly emulate reality.To bridge this gap,we propose a novel framework called simulation-to-reality domain adaptation(SRDA)for forecasting the operating parameters of nuclear reactors.The SRDA model employs a transformer-based feature extractor to capture dynamic characteristics and temporal dependencies.A parameter predictor with an improved logarithmic loss function is specifically designed to adapt to varying reactor powers.To fuse prior reactor knowledge from simulations with reality,the domain discriminator utilizes an adversarial strategy to ensure the learning of deep domain-invariant features,and the multiple kernel maximum mean discrepancy minimizes their discrepancies.Experiments on neutron fluxes and temperatures from a pressurized water reactor illustrate that the SRDA model surpasses various advanced methods in terms of predictive performance.This study is the first to use domain adaptation for real-world reactor prediction and presents a feasible solution for enhancing the transferability and generalizability of simulated data.展开更多
Accurate water level measurement in nuclear reactors,particularly in PWRs(pressurized water reactors)and BWRs(boiling water reactors),is essential for ensuring the safety and efficiency of reactor operations.K-type HJ...Accurate water level measurement in nuclear reactors,particularly in PWRs(pressurized water reactors)and BWRs(boiling water reactors),is essential for ensuring the safety and efficiency of reactor operations.K-type HJTCs(heated junction thermocouples)are widely used for this purpose due to their ability to withstand extreme temperatures and radiation conditions.This article explores the role of HJTCs in reactor water level measurement and compares the performance of 2-wire and 3-wire connections.While the 2-wire connection is simple and cost-effective,it can introduce measurement inaccuracies due to wire resistance.In contrast,the 3-wire connection compensates for lead resistance,offering more precise and reliable measurements,particularly in long-distance applications.This paper discusses the operational considerations of these wiring configurations in the context of nuclear reactors and highlights the importance of choosing the appropriate connection type to optimize safety and measurement accuracy in PWR and BWR reactors.展开更多
Fe2+ oxidation by Acidithiobacillus ferrooxidans(At.ferrooxidans) under different solid contents by adding inert Al2O3 powder was examined in rotating-drum and stirred-tank reactors.The results show that the bioact...Fe2+ oxidation by Acidithiobacillus ferrooxidans(At.ferrooxidans) under different solid contents by adding inert Al2O3 powder was examined in rotating-drum and stirred-tank reactors.The results show that the bioactivity of At.ferrooxidans in the stirred-tank is higher than that in the rotating-drum in the absence of Al2O3 powder,but the biooxidation rate of Fe2+ decreases markedly from 0.23 g/(L·h) to 0.025 g/(L·h) with increasing the content of Al2O3 powder from 0 to 50%(mass fraction) in the stirred-tank probably due to the deactivation of At.ferrooxidans resulting from the collision and friction of solid particles.The increase in Al2O3 content has a little adverse effect on the bioactivity of At.ferrooxidans in the rotating-drum due to different mixing mechanisms of the two reactors.The biooxidation rate of Fe2+ in the rotating-drum is higher than that in the stirred-tank at the same content of Al2O3 powder,especially at high solid content.The higher bioactivity of At.ferrooxidans can be maintained for allowing high solid content in the rotating-drum reactor,but its application potential still needs to be verified further by the sulfide bioleaching for the property differences of Al2O3 powder and sulfide minerals.展开更多
Pneumatically agitated slurry reactors,including bubble column reactors and airlift loop reactors(ALRs),are important gas-liquid-solid multiphase reactors.These reactors have been widely applied in many processes,espe...Pneumatically agitated slurry reactors,including bubble column reactors and airlift loop reactors(ALRs),are important gas-liquid-solid multiphase reactors.These reactors have been widely applied in many processes,especially in the biological fermentation and energy chemical industry,due to their low shear stress,good mixing,perfect mass-/heat-transfer properties,and relatively low costs.To further improve the performance of slurry reactors(i.e.,mixing and mass/heat transfer)and to satisfy industrial require-ments(e.g.,temperature control,reduction of back-mixing,and product separation),the process intensi-fication of slurry reactors is essential.This article starts by reviewing the latest advancements in the intensification of mixing and mass/heat transfer in these two types of reactors.It then summarizes process-intensification methods for mixing and separation that allow continuous production in these slurry reactors.Process-intensification technology that integrates directional flow in an ALR with simple solid-liquid separation in a hydrocyclone is recommended for its high efficiency and low costs.This arti-cle also systematically addresses vital considerations and challenges,including flow regime discrimina-tion,gas spargers,solid particle effects,and other concerns in slurry reactors.It introduces the progress of numerical simulation using computational fluid dynamics(CFD)for the rational design of slurry reactors and discusses difficulties in modeling.Finally,it presents conclusions and perspectives on the design of industrial slurry reactors.展开更多
Fluidized beds enable good solids mixing,high rates of heat and mass transfer,and large throughputs,but there remain issues related to fluidization quality and scale-up.In this work I review modification techniques fo...Fluidized beds enable good solids mixing,high rates of heat and mass transfer,and large throughputs,but there remain issues related to fluidization quality and scale-up.In this work I review modification techniques for fluidized beds from the perspective of the principles of process intensification(PI),that is,effective bubbling suppression and elutriation control.These techniques are further refined into(1)design factors,e.g.modifying the bed configuration,or the application of internal and external forces,and(2)operational factors,including altering the particle properties(e.g.size,density,surface area)and fluidizing gas properties(e.g.density,viscosity,or velocity).As far as two proposed PI principles are concerned,our review suggests that it ought to be possible to gain improvements of between 2 and 4 times over conventional fluidized bed designs by the application of these techniques.展开更多
The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separati...The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separation, while the reactors operate at temperatures/pressures favorable for reaction kinetics. According to the smooth operation and automatic control problem of the distillation column with side reactors (SRC), the design, simulation calculation and dynamic control of the SCR process for chlorobenzene production are discussed in the paper. Firstly, the mechanism models, the integrated structure optimal design and process simulation systems are established, respectively. And then multivariable control schemes are designed, the controllability of SRC process based on the optimal steady-state integrated structure is explored. The dynamic response performances of closed-loop system against several disturbances are discussed to verify the effectiveness of control schemes for the SRC process. The simulating results show that the control structure using conventional control strategies can effectively overcome feeding disturbances in a specific range.展开更多
Hydrodynamic cavitation is considered to be a promising technology for process intensification,due to its high energy efficiency,cost-effective operation,ability to induce chemical reactions,and scale-up possibilities...Hydrodynamic cavitation is considered to be a promising technology for process intensification,due to its high energy efficiency,cost-effective operation,ability to induce chemical reactions,and scale-up possibilities.In the past decade,advancements have been made in the fundamental understanding of hydrodynamic cavitation and its main variables,which provide a basis for applications of hydrodynamic cavitation in radical-induced chemical reaction processes.Here,we provide an extensive review of these research efforts,including the fundamentals of hydrodynamic cavitation,the design of cavitation reactors,cavitation-induced reaction enhancement,and relevant industrial applications.Two types of hydrodynamic cavitation reactors—namely,stationary and rotational—are compared.The design parameters of a hydrodynamic cavitation reactor and reactor performance at the laboratory and pilot scales are discussed,and recommendations are made regarding optimal operation and geometric conditions.The commercial cavitation reactors that are currently on the market are reviewed here for the first time.The unique features of hydrodynamic cavitation have been widely applied to various chemical reactions,such as oxidization reactions and wastewater treatment,and to physical processes,such as emulsion generation and component extraction.The roles of radicals and gas bubble implosion are also thoroughly discussed.展开更多
The experiments were carried out in continuous flow acidogenic reactors with molasses used as substrate to study the effects of pH and redox potential on fermentation types. The conditions for each fermentation type w...The experiments were carried out in continuous flow acidogenic reactors with molasses used as substrate to study the effects of pH and redox potential on fermentation types. The conditions for each fermentation type were investigated at different experimental stages of start up, pH regulating and redox potential regulating. The experiments confirmed that butyric acid type fermentation would occur at pH > 6, the propionic acid type fermentation at pH about 5.5 with E h> -278 mV, and the ethanol type fermentation at pH < 4.5. A higher redox potential will lead to propionic acid type fermentation because propionogens are facultative anaerobic bacteria.展开更多
Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challengi...Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.展开更多
Accident-tolerant fuel(ATF)has attracted considerable research attention since the 2011 Fukushima nuclear disaster.To improve the accident tolerance of the fuel-cladding systems in the current light-water reactors,it ...Accident-tolerant fuel(ATF)has attracted considerable research attention since the 2011 Fukushima nuclear disaster.To improve the accident tolerance of the fuel-cladding systems in the current light-water reactors,it is proposed to develop and deploy(1)an enhanced Zrbased alloy or coated zircaloy for the fuel cladding,(2)alternative cladding materials with better accident tolerance,and(3)alternative fuels with enhanced accident tolerance and/or a higher U density.This review presents the features of the current UO2-zircaloy system.Different techniques and characters to develop coating materials and enhanced Zr-based alloys are summarized.The features of several selected alternative fuels and cladding materials are reviewed and discussed.The neutronic evaluations of alternative fuel-cladding systems are analyzed.It is expected that one or more types of ATF-cladding systems discussed in the present review will be implemented in commercial reactors.展开更多
In resonance with the Fukushima Daiichi Nuclear Power Plant accident lesson, a novel fuel design to enhance safety regarding severe accident scenarios has become increasingly appreciated in the nuclear power industry....In resonance with the Fukushima Daiichi Nuclear Power Plant accident lesson, a novel fuel design to enhance safety regarding severe accident scenarios has become increasingly appreciated in the nuclear power industry. This research focuses on analysis of the neutronic properties of a silicon carbide(SiC) cladding fuel assembly, which provides a greater safety margin as a type of accident-tolerant fuel for pressurized water reactors. The general physical performance of SiC cladding is explored to ascertain its neutronic performance. The neutron spectrum, accumulation of ^(239)Pu, physical characteristics,temperature reactivity coefficient, and power distribution are analyzed. Furthermore, the influences of a burnable poison rod and enrichment are explored. SiC cladding assemblies show a softer neutron spectrum and flatter power distribution than conventional Zr alloy cladding fuel assemblies. Lower enrichment fuel is required when SiC cladding is adopted. However, the positive reactivity coefficient associated with the SiC material remains to be offset. The results reveal that SiC cladding assemblies show broad agreement with the neutronic performance of conventional Zr alloy cladding fuel. In the meantime, its unique physical characteristics can lead to improved safety and economy.展开更多
文摘Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future.
基金supported by the Natural Science Foundation of Shandong Province(ZR2023ZD22)the Major Research and Development Program of Shandong Province(2023CXGC010601).
文摘Under the dual-carbon background,the technological updating of traditional high-energy-consuming equipment should not be delayed,and the problem of reactor energy consumption should not be ignored.Therefore,this study is based on computational fluid dynamics(CFD)theory to simulate the spiral stirred reactor with different design parameters(distance of paddle from bottom surface to reactor height ratio h1/H,diameter of stirring paddle to reactor diameter ratio Ds/D,length of blade section to reactor height ratio Ls/H).It was found that the reactor designed with lower Ls/H values and higher h1/H,Ds/D values would have smaller power number(Np)values and smaller flow field average velocity.In addition,this study also fitted the correlation equation of Np concerning Reynolds number and h1/H,Ds/D,and Ls/H,and the conclusions of the study can be used as a reference for the design of industrial equipment.
文摘Electrochemical CO_(2) reduction(ECR)driven by intermittent renewable energy sources is an emerging technology to achieve net-zero CO_(2) emissions.Tandem electrochemical CO_(2) reduction(T-ECR),employs tandem catalysts with synergistic or complementary functions to efficiently convert CO_(2) into multi-carbon(C^(2+))products in a succession of reactions within single or sequentially coupled reactors.However,the lack of clear interpretation and systematic understanding of T-ECR mechanisms has resulted in suboptimal current outcomes.This review presents new perspectives and summarizes recent advancements in efficient T-ECR across various scales,including synergistic tandem catalysis at the microscopic scale,relay tandem catalysis at the mesoscopic scale,and tandem reactors at the macroscopic scale.We begin by outlining the principle of tandem catalysis,followed by discuss on tandem catalyst design,the electrode construction,and reactor configuration.Additionally,we address the challenges and prospects of tandem strategies,emphasizing the integration of machine learning,theoretical calculations,and advanced characterization techniques for developing industry-scale CO_(2) valorization.
基金support from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.PolyU25213824)Hong Kong Polytechnic University(WZ4Q,CDBZ,CE2Y)+3 种基金the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Department of Science and Technology of Guangdong Province(2023A1515110123,2024A1515012390)MTR Research Funding Scheme(PTU-24028).
文摘The advancement of clean electricity is positioning electrochemical reactors at the forefront of future electrosynthesis technologies.Solid-state electrolyte(SSE)reactors emerge for their distinctive configurations and ability to produce high-purity fuels and chemicals efficiently without additional purification steps.This marks a substantial development in electrochemical synthesis.In this perspective,we critically examine cutting-edge innovations in SSE devices with particular emphasis on the architectural introduction of core cell components,novel electrochemical cell configurations,and assembly methodologies.The use of SSE reactors is presently undergoing a pivotal transition from fundamental laboratory investigations to large-scale engineering implementations,demonstrating remarkable progress in multiple domains:(1)sustainable synthesis of high-value organic acids(formic and acetic acids),(2)production of critical oxidizers hydrogen peroxide(H_(2)O_(2))and liquid fuels(ethanol),(3)ammonia(NH_(3))production,(4)carbon capture technologies,(5)lithium recovery and recycling,and(6)tandem or coupling strategies for high-value-added products.Importantly,the transformative potential in environmental remediation,particularly for airborne pollutant sequestration and advanced wastewater purification,is addressed.Additionally,the innovative architectural blueprints for next-generation SSE stack are presented,aiming to establish a comprehensive framework to guide the transition from laboratory-scale innovation to industrial-scale deployment of SSE devices in the foreseeable future.
文摘High flux reactors(HFRs)are a special type of research reactor aimed at providing a high neutron flux.Compared with power reactors and other research reactors,HFRs have unique technical features in terms of reactor core design,irradiation capability,and operating characteristics.They can be applied to the irradiation tests of nuclear fuels and materials,radioisotope production,neutron science,and experiments.This paper reviews HFRs,including their development history,technical features,and application areas,as well as trends in the development of new and advanced HFRs.
基金supported by the Youth Innovation Promotion Association(YIPA)(No.E329290101)of the Chinese Academy of Sciences。
文摘Molten salt reactors(MSRs)are a promising candidate for Generation IV reactor technologies,and the small modular molten salt reactor(SM-MSR),which utilizes low-enriched uranium and thorium fuels,is regarded as a wise development path to accelerate deployment time.Uncertainty and sensitivity analyses of accidents guide nuclear reactor design and safety analyses.Uncertainty analysis can ascertain the safety margin,and sensitivity analysis can reveal the correlation between accident consequences and input parameters.Loss of forced cooling(LOFC)represents an accident scenario of the SM-MSR,and the study of LOFC could offer useful information to improve physical thermohydraulic and structural designs.Therefore,this study investigates the uncertainty of LOFC consequences and the sensitivity of related parameters.The uncertainty of the LOFC consequences was analyzed using the Monte Carlo method,and multiple linear regression was employed to analyze the sensitivity of the input parameters.The uncertainty and sensitivity analyses showed that the maximum reactor outlet fuel salt temperature was 725.5℃,which is lower than the acceptable criterion,and five important parameters influencing LOFC consequences were identified.
基金supported by the National Natural Science Foundation of China(22178361,22378402,52302310)the International Partnership Project of CAS(039GJHZ2022029GC)+5 种基金the National Key R&D Program of China(2020YFA0710200)the foundation of the Innovation Academy for Green Manufacture Institute,Chinese Academy of Sciences(IAGM2022D07)the China Postdoctoral Science Foundation(2022M722597)QinChuangYuan Cites High-level Innovation and Entrepreneurship Talent Programs(QCYRCXM-2022-335)the Fundamental Research Funds for the Central Universities(G2022KY05111)the Open Project Program of Anhui Province International Research Center on Advanced Building Materials(JZCL2303KF)。
文摘Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still undesirable under certain circumstances.Encouragingly,laminar microfluidic reactor offers prospective options that possess controllable flow characteristics such as enhanced mass transport,precise laminar flow control and the ability to expand production scale progressively.In this comprehensive review,the underlying fundamentals of the paired electrosynthesis are initially summarized,followed by categorizing the paired electrosynthesis including parallel paired electrosynthesis,divergent paired electrosynthesis,convergent paired electrosynthesis,sequential paired electrosynthesis and linear paired electrosynthesis.Thereafter,a holistic overview of microfluidic reactor equipment,integral fundamentals and research methodology as well as channel extension and scale-up strategies is proposed.The established fundamentals and evaluated metrics further inspired the applications of microfluidic reactors in paired electrosynthesis.This work stimulated the overwhelming investigation of mechanism discovery,material screening strategies,and device assemblies.
基金the National Natural Science Foundation of China(22078030)the National Key Research and Development Project(2019YFC1905802,2022YFB3504305)+1 种基金the Joint Funds of the National Natural Science Foundation of China(U1802255,CSTB2022NSCQ-LZX0014)the Key Project of Independent Research Project of State Key Laboratory of Coal Mine Disaster Dynamics and Control(2011DA105287-zd201902).
文摘Leveraging big data signal processing offers a pathway to the development of artificial intelligencedriven equipment.The analysis of fluid flow signals and the characterization of fluid flow behavior are of critical in two-phase flow studies.Significant research efforts have focused on discerning flow regimes using various signal analysis methods.In this review,recent advances in time series signals analysis algorithms for stirred tank reactors have been summarized,and the detailed methodologies are categorized into the frequency domain methods,time-frequency domain methods,and state space methods.The strengths,limitations,and notable findings of each algorithm are highlighted.Additionally,the interrelationships between these methodologies have also been discussed,as well as the present progress achieved in various applications.Future research directions and challenges are also predicted to provide an overview of current research trends in data mining of time series for analyzing flow regimes and chaotic signals.This review offers a comprehensive summary for extracting and characterizing fluid flow behavior and serves as a theoretical reference for optimizing the characterization of chaotic signals in future research endeavors.
基金supported by the Industry-University Cooperation Project in Fujian Province University(No.2023H6006)the State Key Laboratory of Reliability and Intelligence of Electrical Equipment(No.EERI-KF20200005)。
文摘Artificial intelligence has potential for forecasting reactor conditions in the nuclear industry.Owing to economic and security concerns,a common method is to train data generated by simulators.However,achieving a satisfactory performance in practical applications is difficult because simulators imperfectly emulate reality.To bridge this gap,we propose a novel framework called simulation-to-reality domain adaptation(SRDA)for forecasting the operating parameters of nuclear reactors.The SRDA model employs a transformer-based feature extractor to capture dynamic characteristics and temporal dependencies.A parameter predictor with an improved logarithmic loss function is specifically designed to adapt to varying reactor powers.To fuse prior reactor knowledge from simulations with reality,the domain discriminator utilizes an adversarial strategy to ensure the learning of deep domain-invariant features,and the multiple kernel maximum mean discrepancy minimizes their discrepancies.Experiments on neutron fluxes and temperatures from a pressurized water reactor illustrate that the SRDA model surpasses various advanced methods in terms of predictive performance.This study is the first to use domain adaptation for real-world reactor prediction and presents a feasible solution for enhancing the transferability and generalizability of simulated data.
文摘Accurate water level measurement in nuclear reactors,particularly in PWRs(pressurized water reactors)and BWRs(boiling water reactors),is essential for ensuring the safety and efficiency of reactor operations.K-type HJTCs(heated junction thermocouples)are widely used for this purpose due to their ability to withstand extreme temperatures and radiation conditions.This article explores the role of HJTCs in reactor water level measurement and compares the performance of 2-wire and 3-wire connections.While the 2-wire connection is simple and cost-effective,it can introduce measurement inaccuracies due to wire resistance.In contrast,the 3-wire connection compensates for lead resistance,offering more precise and reliable measurements,particularly in long-distance applications.This paper discusses the operational considerations of these wiring configurations in the context of nuclear reactors and highlights the importance of choosing the appropriate connection type to optimize safety and measurement accuracy in PWR and BWR reactors.
基金Project(2010CB630904) supported by the National Basic Research Program of ChinaProject(5102030) supported by the Beijing Natural Science Foundation,China+1 种基金Projects(21076214,21006108) supported by the National Natural Science Foundation of ChinaProject supported by the Open Funding Project of the State Key Laboratory of Bioreactor Engineering,China
文摘Fe2+ oxidation by Acidithiobacillus ferrooxidans(At.ferrooxidans) under different solid contents by adding inert Al2O3 powder was examined in rotating-drum and stirred-tank reactors.The results show that the bioactivity of At.ferrooxidans in the stirred-tank is higher than that in the rotating-drum in the absence of Al2O3 powder,but the biooxidation rate of Fe2+ decreases markedly from 0.23 g/(L·h) to 0.025 g/(L·h) with increasing the content of Al2O3 powder from 0 to 50%(mass fraction) in the stirred-tank probably due to the deactivation of At.ferrooxidans resulting from the collision and friction of solid particles.The increase in Al2O3 content has a little adverse effect on the bioactivity of At.ferrooxidans in the rotating-drum due to different mixing mechanisms of the two reactors.The biooxidation rate of Fe2+ in the rotating-drum is higher than that in the stirred-tank at the same content of Al2O3 powder,especially at high solid content.The higher bioactivity of At.ferrooxidans can be maintained for allowing high solid content in the rotating-drum reactor,but its application potential still needs to be verified further by the sulfide bioleaching for the property differences of Al2O3 powder and sulfide minerals.
基金supported by the National Key Research and Development Program of China(2016YFB0301701)the National Natural Science Foundation of China(21808234,21878318,and 21938009)+3 种基金the DNL Cooperation Fund,Chinese Academy of Sciences(CAS)(DNL201902)the Strategic Priority Research Program of the CAS(XDA21060400)the QIBEBT and Dalian National Laboratory for Clean Energy of the CAS(QIBEBT ZZBS201803 and QIBEBT I201907)the CAS Key Technology Talent Program.
文摘Pneumatically agitated slurry reactors,including bubble column reactors and airlift loop reactors(ALRs),are important gas-liquid-solid multiphase reactors.These reactors have been widely applied in many processes,especially in the biological fermentation and energy chemical industry,due to their low shear stress,good mixing,perfect mass-/heat-transfer properties,and relatively low costs.To further improve the performance of slurry reactors(i.e.,mixing and mass/heat transfer)and to satisfy industrial require-ments(e.g.,temperature control,reduction of back-mixing,and product separation),the process intensi-fication of slurry reactors is essential.This article starts by reviewing the latest advancements in the intensification of mixing and mass/heat transfer in these two types of reactors.It then summarizes process-intensification methods for mixing and separation that allow continuous production in these slurry reactors.Process-intensification technology that integrates directional flow in an ALR with simple solid-liquid separation in a hydrocyclone is recommended for its high efficiency and low costs.This arti-cle also systematically addresses vital considerations and challenges,including flow regime discrimina-tion,gas spargers,solid particle effects,and other concerns in slurry reactors.It introduces the progress of numerical simulation using computational fluid dynamics(CFD)for the rational design of slurry reactors and discusses difficulties in modeling.Finally,it presents conclusions and perspectives on the design of industrial slurry reactors.
文摘Fluidized beds enable good solids mixing,high rates of heat and mass transfer,and large throughputs,but there remain issues related to fluidization quality and scale-up.In this work I review modification techniques for fluidized beds from the perspective of the principles of process intensification(PI),that is,effective bubbling suppression and elutriation control.These techniques are further refined into(1)design factors,e.g.modifying the bed configuration,or the application of internal and external forces,and(2)operational factors,including altering the particle properties(e.g.size,density,surface area)and fluidizing gas properties(e.g.density,viscosity,or velocity).As far as two proposed PI principles are concerned,our review suggests that it ought to be possible to gain improvements of between 2 and 4 times over conventional fluidized bed designs by the application of these techniques.
基金Supported by the National Natural Science Foundation of China (61203020, 21276126)the Natural Science Foundation of Jiangsu Province (BK2011795)+1 种基金Jiangsu Province Higher Education Natural Science Foundation (09KJA530004)China Postdoctoral Science Foundation (20100471325)
文摘The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separation, while the reactors operate at temperatures/pressures favorable for reaction kinetics. According to the smooth operation and automatic control problem of the distillation column with side reactors (SRC), the design, simulation calculation and dynamic control of the SCR process for chlorobenzene production are discussed in the paper. Firstly, the mechanism models, the integrated structure optimal design and process simulation systems are established, respectively. And then multivariable control schemes are designed, the controllability of SRC process based on the optimal steady-state integrated structure is explored. The dynamic response performances of closed-loop system against several disturbances are discussed to verify the effectiveness of control schemes for the SRC process. The simulating results show that the control structure using conventional control strategies can effectively overcome feeding disturbances in a specific range.
基金The authors are grateful for the financial support provided by the Natural Sciences and Engineering Research Council of Canada(RGPIN_2019-06614).
文摘Hydrodynamic cavitation is considered to be a promising technology for process intensification,due to its high energy efficiency,cost-effective operation,ability to induce chemical reactions,and scale-up possibilities.In the past decade,advancements have been made in the fundamental understanding of hydrodynamic cavitation and its main variables,which provide a basis for applications of hydrodynamic cavitation in radical-induced chemical reaction processes.Here,we provide an extensive review of these research efforts,including the fundamentals of hydrodynamic cavitation,the design of cavitation reactors,cavitation-induced reaction enhancement,and relevant industrial applications.Two types of hydrodynamic cavitation reactors—namely,stationary and rotational—are compared.The design parameters of a hydrodynamic cavitation reactor and reactor performance at the laboratory and pilot scales are discussed,and recommendations are made regarding optimal operation and geometric conditions.The commercial cavitation reactors that are currently on the market are reviewed here for the first time.The unique features of hydrodynamic cavitation have been widely applied to various chemical reactions,such as oxidization reactions and wastewater treatment,and to physical processes,such as emulsion generation and component extraction.The roles of radicals and gas bubble implosion are also thoroughly discussed.
文摘The experiments were carried out in continuous flow acidogenic reactors with molasses used as substrate to study the effects of pH and redox potential on fermentation types. The conditions for each fermentation type were investigated at different experimental stages of start up, pH regulating and redox potential regulating. The experiments confirmed that butyric acid type fermentation would occur at pH > 6, the propionic acid type fermentation at pH about 5.5 with E h> -278 mV, and the ethanol type fermentation at pH < 4.5. A higher redox potential will lead to propionic acid type fermentation because propionogens are facultative anaerobic bacteria.
基金Supported by the National Natural Science Foundation of China (20990222, 21106061), the National Basic Research Program of China (2009CB623406), the National Key Science and Technology Program of China (2011BAE07B05) and the Natural Science Foundation of Jiangsu Province, China (BK2010549, BK2009021).
文摘Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.
基金supported by the National Key Research and Development Program of China(No.2018YFB1900405)the National Natural Science Foundation of China(No.11775316)+3 种基金the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(No.2016TQ03N575)the Fundamental Research Funds for the Central Universities(No.19lgpy299)the Science and Technology Planning Project of Guangdong Province,China(No.2019A050510022)the Nuclear Power Institute of China(No.HT-ATF-14-2018001)
文摘Accident-tolerant fuel(ATF)has attracted considerable research attention since the 2011 Fukushima nuclear disaster.To improve the accident tolerance of the fuel-cladding systems in the current light-water reactors,it is proposed to develop and deploy(1)an enhanced Zrbased alloy or coated zircaloy for the fuel cladding,(2)alternative cladding materials with better accident tolerance,and(3)alternative fuels with enhanced accident tolerance and/or a higher U density.This review presents the features of the current UO2-zircaloy system.Different techniques and characters to develop coating materials and enhanced Zr-based alloys are summarized.The features of several selected alternative fuels and cladding materials are reviewed and discussed.The neutronic evaluations of alternative fuel-cladding systems are analyzed.It is expected that one or more types of ATF-cladding systems discussed in the present review will be implemented in commercial reactors.
基金supported by the National Natural Science Foundation of China(No.11675057)the Fundamental Research Funds for the Central Universities(No.2017ZD100)
文摘In resonance with the Fukushima Daiichi Nuclear Power Plant accident lesson, a novel fuel design to enhance safety regarding severe accident scenarios has become increasingly appreciated in the nuclear power industry. This research focuses on analysis of the neutronic properties of a silicon carbide(SiC) cladding fuel assembly, which provides a greater safety margin as a type of accident-tolerant fuel for pressurized water reactors. The general physical performance of SiC cladding is explored to ascertain its neutronic performance. The neutron spectrum, accumulation of ^(239)Pu, physical characteristics,temperature reactivity coefficient, and power distribution are analyzed. Furthermore, the influences of a burnable poison rod and enrichment are explored. SiC cladding assemblies show a softer neutron spectrum and flatter power distribution than conventional Zr alloy cladding fuel assemblies. Lower enrichment fuel is required when SiC cladding is adopted. However, the positive reactivity coefficient associated with the SiC material remains to be offset. The results reveal that SiC cladding assemblies show broad agreement with the neutronic performance of conventional Zr alloy cladding fuel. In the meantime, its unique physical characteristics can lead to improved safety and economy.