Biomass represents an abundant and sustainable carbon resource to partially replace fossil resources for producing essential chemicals,alleviating energy and carbon emission issues associated with the traditional chem...Biomass represents an abundant and sustainable carbon resource to partially replace fossil resources for producing essential chemicals,alleviating energy and carbon emission issues associated with the traditional chemical industry.For instance,2,5-furandicarboxylic acid(FDCA)is one of the valuable biomass-derived chemicals,and is an excellent alternative to petroleum-based terephthalic acid for plastics.展开更多
China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the saf...China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the safety limit during tritium handling and operation in the fuel cycle system.Our tritium technology team is responsible for studying tritium transport behavior in the CFETR tritium safety confinement systems of the National Key R&D Program of China launched in 2017,and we are conducting CFETR tritium plant safety analysis by using CFD software.In this paper,the tritium migration and removal behavior were studied under a postulated accident condition for the Tokamak Exhaust Processing system of CFETR.The quantitative results of the transport behavior of tritium in the process room and glove box during the whole accident sequence(e.g.,tritium release,alarm,isolation,and tritium removal)have been presented.The results support the detailed design and engineering demonstration-related research of CFETR tritium plant.展开更多
A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping m...A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.展开更多
As a promising technology that may solve global environmental challenges and enable intermittent renewable energy storage as well as zero-carbon-emission energy cycling, the carbon dioxide reduction reaction has been ...As a promising technology that may solve global environmental challenges and enable intermittent renewable energy storage as well as zero-carbon-emission energy cycling, the carbon dioxide reduction reaction has been extensively studied in the past several years. Beyond the fruitful progresses and innovations in catalysts, the system engineering-based research on the full carbon dioxide reduction reaction is urgently needed toward the industrial application. In this review, we summarize and discuss recent works on the innovations in the reactor architectures and optimizations based on system engineering in carbon dioxide reduction reaction. Some challenges and future trends in this field are further discussed, especially on the system engineering factors.展开更多
A comprehensive 2D computational fluid dynamics (CFD) model was developed to simulate the flow behavior and catalytic dehydrogenation reaction of syngas in a heterogenous fixed-bed reactor (FBR). The model combine...A comprehensive 2D computational fluid dynamics (CFD) model was developed to simulate the flow behavior and catalytic dehydrogenation reaction of syngas in a heterogenous fixed-bed reactor (FBR). The model combined the porous medium CFD model with a reaction kinetics model. To acquire an accu- rate reaction kinetics model, a comprehensive reaction mechanism was studied for the heterogeneous catalytic dehydrogenation reaction ofsyngas over a supported metal catalyst. Based on the reaction mech- anism and a statistical test, a reliable kinetics model was proposed. The CFD model combined with the above kinetics model was validated with one set of experimental data. The CFD model was also used to predict key reaction variable distributions such as the temperature and the component concentrations in the reactor.展开更多
文摘Biomass represents an abundant and sustainable carbon resource to partially replace fossil resources for producing essential chemicals,alleviating energy and carbon emission issues associated with the traditional chemical industry.For instance,2,5-furandicarboxylic acid(FDCA)is one of the valuable biomass-derived chemicals,and is an excellent alternative to petroleum-based terephthalic acid for plastics.
基金the National Key R&D Program of China-National Magnetic Confinement Fusion Science Program(No.2017YFE0300305).
文摘China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the safety limit during tritium handling and operation in the fuel cycle system.Our tritium technology team is responsible for studying tritium transport behavior in the CFETR tritium safety confinement systems of the National Key R&D Program of China launched in 2017,and we are conducting CFETR tritium plant safety analysis by using CFD software.In this paper,the tritium migration and removal behavior were studied under a postulated accident condition for the Tokamak Exhaust Processing system of CFETR.The quantitative results of the transport behavior of tritium in the process room and glove box during the whole accident sequence(e.g.,tritium release,alarm,isolation,and tritium removal)have been presented.The results support the detailed design and engineering demonstration-related research of CFETR tritium plant.
基金supported by the National Key R&D Program of China (No. 2017YFE0300106)National Natural Science Foundation of China (Nos. 11935005 and 12075049)the Fundamental Research Funds for the Central Universities(Nos. DUT21TD104 and DUT21LAB110)。
文摘A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.
基金supported by the National Key Research and Development Program of China (2017YFA0206901,2018YFA0209401)the National Natural Science Foundation of China (21975051,21773036)+2 种基金the Science and Technology Commission of Shanghai Municipality (17JC1402000,19XD1420400)the Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-07-E00045)the Shanghai Shu-Guang Program (15SG01)
文摘As a promising technology that may solve global environmental challenges and enable intermittent renewable energy storage as well as zero-carbon-emission energy cycling, the carbon dioxide reduction reaction has been extensively studied in the past several years. Beyond the fruitful progresses and innovations in catalysts, the system engineering-based research on the full carbon dioxide reduction reaction is urgently needed toward the industrial application. In this review, we summarize and discuss recent works on the innovations in the reactor architectures and optimizations based on system engineering in carbon dioxide reduction reaction. Some challenges and future trends in this field are further discussed, especially on the system engineering factors.
基金the National Natural Science Foundation of China(No.21076171)the National Ministry of Science and Technology of China(No.2012CB21500402)the State-Key Laboratory of Chemical Engineering of Tsinghua University(No.SKL-ChE-10A03)for their support
文摘A comprehensive 2D computational fluid dynamics (CFD) model was developed to simulate the flow behavior and catalytic dehydrogenation reaction of syngas in a heterogenous fixed-bed reactor (FBR). The model combined the porous medium CFD model with a reaction kinetics model. To acquire an accu- rate reaction kinetics model, a comprehensive reaction mechanism was studied for the heterogeneous catalytic dehydrogenation reaction ofsyngas over a supported metal catalyst. Based on the reaction mech- anism and a statistical test, a reliable kinetics model was proposed. The CFD model combined with the above kinetics model was validated with one set of experimental data. The CFD model was also used to predict key reaction variable distributions such as the temperature and the component concentrations in the reactor.