期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improving the damage potential of W-Zr reactive structure material under extreme loading condition 被引量:6
1
作者 Lu-yao Wang Jian-wei Jiang +2 位作者 Mei Li Jian-bing Men Shu-you Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期467-477,共11页
Projectiles made of reactive structure materials(RSM)can damage the target with not only kinetic but also chemical energy,but the enhanced damage potential of RSM may become compromised if extreme loading condition di... Projectiles made of reactive structure materials(RSM)can damage the target with not only kinetic but also chemical energy,but the enhanced damage potential of RSM may become compromised if extreme loading condition disintegrates the projectile before the target is reached.In this work,a ductile coating of Ni was introduced to a tungsten-zirconium(W-Zr)alloy,a typical brittle RSM,to preserve the damage potential of the projectile.Detonation driving tests were carried out with X-ray photography and gunpowder deflagration driving tests were carried out with high-speed photography for the coated and uncoated RSM samples,respectively.The craters on the witness target were analyzed by scanning electron microscopy and X-ray diffraction.The Ni coating was found to effectively preserve the damage potential of the W-Zr alloy under extreme loading conditions,whereas the uncoated sample fractured and ignited before impacting the target in both detonation and deflagration driving.The crack propagation between the reactively brittle core and the ductile coating was analyzed based on the crack arrest theory to mechanistically demonstrate how the coating improves the structural integrity and preserves the damage potential of the projectile.Specifically,the Ni coating envelops theW-Zr core until the coated sphere penetrates the target,and the coating is then eroded and worn to release the reactive core for the projectile to damage the target more intensively. 展开更多
关键词 reactive structure material Extreme loading Structural integrity Damage potential
在线阅读 下载PDF
Thermochemical characteristics of Ce_(95)Al_(5) material and perforation behavior of its liner on steel targets
2
作者 Liang Mao Peiying Li +5 位作者 Guitao Liu Xiongbo Feng Yitong Liu Zirui Jiang Chunlan Jiang Baolin Wang 《Defence Technology(防务技术)》 2025年第12期177-187,共11页
Cerium-aluminum(CeAl)alloy is promising reactive structural materials(RSMs)with significant potential for liner applications.To investigate the thermochemical characteristics of CeAl alloy and the perforation behavior... Cerium-aluminum(CeAl)alloy is promising reactive structural materials(RSMs)with significant potential for liner applications.To investigate the thermochemical characteristics of CeAl alloy and the perforation behavior of its liner impacting steel targets,a CeAl alloy liner with 5 wt%Al content was fabricated,with a cerium(Ce)liner and a copper(Cu)liner used as control.The microstructure and elemental distribution of the CeAl alloy were analyzed using SEM,EDS,and XRD.The thermochemical reaction mechanism of the CeAl alloy was examined through TG-DSC.Penetration experiments were conducted to explore the combined effects of invasion and implosion of CeAl alloy liner against steel target.The results indicate that the addition of Al leads to the formation of Ce_(3)Al intermetallic compounds in the alloy and reduces the apparent activation energy of the Ce-based alloy by around 53.17%,thereby facilitating energy release.The presence of 5 wt%Al increases the calorific value by approximately 24.5%,and this change allows the oxidation process to be divided into three distinct stages.Compared to an inert copper liner,the average penetration diameter of the CeAl_(5) reactive alloy liner increases by around 42.78%.Furthermore,when compared to the Ce liner,the penetration depth of the CeAl_(5) reactive alloy liner increases by approximately 82.64%. 展开更多
关键词 Ce_(95)Al_(5)alloy liner Thermochemical characteristics Perforation behavior reactive structure materials
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部