Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the...Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To impr...Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To improve the quality of the solution and reduce the inference time burden,this paper proposes a new graph attention networks based method to directly map the complex nonlinear relationship between graphs(topology and power loads)and reactive power scheduling schemes of distribution networks,from a data-driven perspective.The graph attention network is tailored specifically to this problem and incorporates several innovative features such as a self-loop in the adjacency matrix,a customized loss function,and the use of max-pooling layers.Additionally,a rulebased strategy is proposed to adjust infeasible solutions that violate constraints.Simulation results on multiple distribution networks demonstrate that the proposed method outperforms other machine learning based methods in terms of the solution quality and robustness to varying load conditions.Moreover,its online inference time is significantly faster than traditional physical model based methods,particularly for large-scale distribution networks.展开更多
This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss r...This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.展开更多
The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute...The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.展开更多
The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years.In severe cases,it will endanger the security and stability of power grid.T...The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years.In severe cases,it will endanger the security and stability of power grid.This paper presents an optimal reactive power compensation method of distribution network to prevent reactive power reverse.Firstly,an integrated reactive power planning(RPP)model with power factor constraints is established.Capacitors and reactors are considered to be installed in the distribution system at the same time.The objective function is the cost minimization of compensation and real power loss with transformers and lines during the planning period.Nodal power factor limits and reactor capacity constraints are new constraints.Then,power factor sensitivity with respect to reactive power is derived.An improved genetic algorithm by power factor sensitivity is used to solve the model.The optimal locations and sizes of reactors and capacitors can avoid reactive power reversal and power factor exceeding the limit.Finally,the effectiveness of the model and algorithm is proven by a typical high-voltage distribution network.展开更多
Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is...Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm.展开更多
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud...In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.展开更多
A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s...A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.展开更多
A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorith...A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.展开更多
This study examines various issues arising in three-phase unbalanced power distribution networks(PDNs)using a comprehensive optimization approach.With the integration of renewable energy sources,increasing energy dema...This study examines various issues arising in three-phase unbalanced power distribution networks(PDNs)using a comprehensive optimization approach.With the integration of renewable energy sources,increasing energy demands,and the adoption of smart grid technologies,power systems are undergoing a rapid transformation,making the need for efficient,reliable,and sustainable distribution networks increasingly critical.In this paper,the reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic algorithms.Among these advanced search algorithms,the Bonobo Optimizer(BO)has demonstrated superior performance in handling the complexities of unbalanced power distribution network optimization.The study is structured around four distinct scenarios:(Ⅰ)improving mean voltage profile and minimizing active power loss,(Ⅱ)minimizing Voltage Unbalance Index(VUI)and Current Unbalance Index(CUI),(Ⅲ)optimizing key reliability indices using both Line Oriented Reliability Index(LORI)and Customer Oriented Reliability Index(CORI)approaches,and(Ⅳ)employing multi-objective optimization using the Pareto front technique to simultaneously minimize active power loss,average CUI,and System Average Interruption Duration Index(SAIDI).The study aims to contribute to the development of more efficient,reliable,and sustainable energy systems by addressing voltage profiles,power losses,reduction of imbalance,and the enhancement of reliability together.展开更多
A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain struc...A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain structure of the ADN power transaction is built and the transaction information is kept in blocks.Secondly,considering the transaction needs between users and power suppliers in ADN,an energy request mechanism is proposed,and the optimization objective function is designed by integrating cost aware requests and storage aware requests.Finally,the particle swarm optimization algorithm is used for multi-objective optimal search to find the power trading scheme with the minimum power purchase cost of users and the maximum power sold by power suppliers.The experimental demonstration of the proposed method based on the experimental platform shows that when the number of participants is no more than 10,the transaction delay time is 0.2 s,and the transaction cost fluctuates at 200,000 yuan,which is better than other comparison methods.展开更多
Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interfere...Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).展开更多
The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency an...The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.展开更多
In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation pr...In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation problems are jointly optimized.In order to make the resource allocation suitable for large scale networks,the optimization problem is decomposed first based on an effective decomposition algorithm named optimal condition decomposition(OCD) algorithm.Furthermore,aiming at reducing implementation complexity,the subcarriers are divided into chunks and are allocated chunk by chunk.The simulation results show that the proposed algorithm achieves more superior performance than uniform power allocation scheme and Lagrange relaxation method,and then the proposed algorithm can strike a balance between the complexity and performance of the multi-carrier Ultra-Dense Networks.展开更多
This paper proposes to use the power system simulation software CYME to plan, model and simulate for an actual distribution network for improving the reliability and efficiency, enhancing the efficiency and capacity, ...This paper proposes to use the power system simulation software CYME to plan, model and simulate for an actual distribution network for improving the reliability and efficiency, enhancing the efficiency and capacity, simulating the abnormal condition of distribution network, and presenting operation program of safe, reliable and having simulation record statements. The modeling simulation results show that the software module has lots of advantages including high accuracy, ideal reliability, powerful practicality in simulation and analysis of distribution network, it only need to create once model, the model can sufficiently satisfy multifarious types of simulation analysis required for the distribution network planning.展开更多
In order to optimize power utilization of relay nodes in cooperative communication,a power allocation algorithm with objective function to maximize system capacity is proposed.Based on the convex optimization theory,a...In order to optimize power utilization of relay nodes in cooperative communication,a power allocation algorithm with objective function to maximize system capacity is proposed.Based on the convex optimization theory,an ellipsoid algorithm is used to solve this problem,which could simplify the subgradient choosing steps and improve convergence stability,so that an optimized power allocation algorithm is presented.Theoretical analysis and simulation results show that the algorithm can effectively distribute the power of each node with lower complexity,and ensure the transmission capability of relay nodes in cooperative communication.展开更多
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金supported by the Science and Technology Project of Sichuan Electric Power Company“Power Supply Guarantee Strategy for Urban Distribution Networks Considering Coordination with Virtual Power Plant during Extreme Weather Event”(No.521920230003).
文摘Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
文摘Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To improve the quality of the solution and reduce the inference time burden,this paper proposes a new graph attention networks based method to directly map the complex nonlinear relationship between graphs(topology and power loads)and reactive power scheduling schemes of distribution networks,from a data-driven perspective.The graph attention network is tailored specifically to this problem and incorporates several innovative features such as a self-loop in the adjacency matrix,a customized loss function,and the use of max-pooling layers.Additionally,a rulebased strategy is proposed to adjust infeasible solutions that violate constraints.Simulation results on multiple distribution networks demonstrate that the proposed method outperforms other machine learning based methods in terms of the solution quality and robustness to varying load conditions.Moreover,its online inference time is significantly faster than traditional physical model based methods,particularly for large-scale distribution networks.
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under Grant No.124E002(1001-Project).
文摘This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.
文摘The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.
文摘The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years.In severe cases,it will endanger the security and stability of power grid.This paper presents an optimal reactive power compensation method of distribution network to prevent reactive power reverse.Firstly,an integrated reactive power planning(RPP)model with power factor constraints is established.Capacitors and reactors are considered to be installed in the distribution system at the same time.The objective function is the cost minimization of compensation and real power loss with transformers and lines during the planning period.Nodal power factor limits and reactor capacity constraints are new constraints.Then,power factor sensitivity with respect to reactive power is derived.An improved genetic algorithm by power factor sensitivity is used to solve the model.The optimal locations and sizes of reactors and capacitors can avoid reactive power reversal and power factor exceeding the limit.Finally,the effectiveness of the model and algorithm is proven by a typical high-voltage distribution network.
文摘Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm.
基金Supported by China Postdoctoral Science Foundation(20090460873)
文摘In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.
文摘A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.
文摘A new combined model is proposed to obtain predictive data value applied in state estimation for radial power distribution networks. The time delay part of the model is calculated by a recursive least squares algorithm of system identification, which can gradually forget past information. The grey series part of the model uses an equal dimension new information model (EDNIM) and it applies 3 points smoothing method to preprocess the original data and modify remnant difference by GM(1,1). Through the optimization of the coefficient of the model, we are able to minimize the error variance of predictive data. A case study shows that the proposed method achieved high calculation precision and speed and it can be used to obtain the predictive value in real time state estimation of power distribution networks.
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under Grant No.124E002(1001-Project).
文摘This study examines various issues arising in three-phase unbalanced power distribution networks(PDNs)using a comprehensive optimization approach.With the integration of renewable energy sources,increasing energy demands,and the adoption of smart grid technologies,power systems are undergoing a rapid transformation,making the need for efficient,reliable,and sustainable distribution networks increasingly critical.In this paper,the reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic algorithms.Among these advanced search algorithms,the Bonobo Optimizer(BO)has demonstrated superior performance in handling the complexities of unbalanced power distribution network optimization.The study is structured around four distinct scenarios:(Ⅰ)improving mean voltage profile and minimizing active power loss,(Ⅱ)minimizing Voltage Unbalance Index(VUI)and Current Unbalance Index(CUI),(Ⅲ)optimizing key reliability indices using both Line Oriented Reliability Index(LORI)and Customer Oriented Reliability Index(CORI)approaches,and(Ⅳ)employing multi-objective optimization using the Pareto front technique to simultaneously minimize active power loss,average CUI,and System Average Interruption Duration Index(SAIDI).The study aims to contribute to the development of more efficient,reliable,and sustainable energy systems by addressing voltage profiles,power losses,reduction of imbalance,and the enhancement of reliability together.
基金supported by the Postdoctoral Research Funding Program of Jiangsu Province under Grant 2021K622C.
文摘A blockchain-based power transaction method is proposed for Active Distribution Network(ADN),considering the poor security and high cost of a centralized power trading system.Firstly,the decentralized blockchain structure of the ADN power transaction is built and the transaction information is kept in blocks.Secondly,considering the transaction needs between users and power suppliers in ADN,an energy request mechanism is proposed,and the optimization objective function is designed by integrating cost aware requests and storage aware requests.Finally,the particle swarm optimization algorithm is used for multi-objective optimal search to find the power trading scheme with the minimum power purchase cost of users and the maximum power sold by power suppliers.The experimental demonstration of the proposed method based on the experimental platform shows that when the number of participants is no more than 10,the transaction delay time is 0.2 s,and the transaction cost fluctuates at 200,000 yuan,which is better than other comparison methods.
文摘Internet of things and network densification bring significant challenges to uplink management.Only depending on optimization algorithm enhancements is not enough for uplink transmission.To control intercell interference,Fractional Uplink Power Control(FUPC)should be optimized from network-wide perspective,which has to find a better traffic distribution model.Conventionally,traffic distribution is geographic-based,and ineffective due to tricky locating efforts.This paper proposes a novel uplink power management framework for Self-Organizing Networks(SON),which firstly builds up pathloss-based traffic distribution model and then makes the decision of FUPC based on the model.PathLoss-based Traffic Distribution(PLTD)aggregates traffic based on the propagation condition of traffic that is defined as the pathloss between the position generating the traffic and surrounding cells.Simulations show that the improvement in optimization efficiency of FUPC with PLTD can be up to 40%compared to conventional GeoGraphic-based Traffic Distribution(GGTD).
基金the Scientific and Technological Project of SGCC Headquarters entitled“Smart Distribution Network and Ubiquitous Power Internet of Things Integrated Development Collaborative Planning Technology Research”(5400-201956447A-0-0-00).
文摘The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.
基金supported in part by Beijing Natural Science Foundation(4152047)the 863 project No.2014AA01A701+1 种基金111 Project of China under Grant B14010China Mobile Research Institute under grant[2014]451
文摘In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation problems are jointly optimized.In order to make the resource allocation suitable for large scale networks,the optimization problem is decomposed first based on an effective decomposition algorithm named optimal condition decomposition(OCD) algorithm.Furthermore,aiming at reducing implementation complexity,the subcarriers are divided into chunks and are allocated chunk by chunk.The simulation results show that the proposed algorithm achieves more superior performance than uniform power allocation scheme and Lagrange relaxation method,and then the proposed algorithm can strike a balance between the complexity and performance of the multi-carrier Ultra-Dense Networks.
文摘This paper proposes to use the power system simulation software CYME to plan, model and simulate for an actual distribution network for improving the reliability and efficiency, enhancing the efficiency and capacity, simulating the abnormal condition of distribution network, and presenting operation program of safe, reliable and having simulation record statements. The modeling simulation results show that the software module has lots of advantages including high accuracy, ideal reliability, powerful practicality in simulation and analysis of distribution network, it only need to create once model, the model can sufficiently satisfy multifarious types of simulation analysis required for the distribution network planning.
基金Supported by the National High Technology Research and Development Programme of China(No.2008AA01A322)National Science andTechnology Major Projects(No.2011ZX03001-007-03)
文摘In order to optimize power utilization of relay nodes in cooperative communication,a power allocation algorithm with objective function to maximize system capacity is proposed.Based on the convex optimization theory,an ellipsoid algorithm is used to solve this problem,which could simplify the subgradient choosing steps and improve convergence stability,so that an optimized power allocation algorithm is presented.Theoretical analysis and simulation results show that the algorithm can effectively distribute the power of each node with lower complexity,and ensure the transmission capability of relay nodes in cooperative communication.