The presence of heavy metals in soil negatively impacts its mechanical properties.Reactive MgO carbonation presents a promising approach to enhance the solidification of Pb-contaminated sandy soils.However,the mechani...The presence of heavy metals in soil negatively impacts its mechanical properties.Reactive MgO carbonation presents a promising approach to enhance the solidification of Pb-contaminated sandy soils.However,the mechanical properties and structural behavior of contaminated soils during carbonation can vary significantly due to differences in soil composition.This study examines the potential application and underlying mechanisms of reactive MgO carbonation in improving the mechanical properties of Pb-contaminated red clay.The findings demonstrate that Pb-contaminated red clay transitions from a plastic to a brittle state following reactive MgO carbonation.After 1 h of treatment,the strength of the red clay exceeded 3 MPa,even at high Pb^(2+)concentrations.The deformation modulus to unconfined compressive strength(UCS)ratio was calculated to be 37.761,with the failure strain primarily ranging from 1.5%to 4.0%.A strength prediction model for the reactive MgO-stabilized Pb-contaminated red clay was proposed,which showed good predictive accuracy.Furthermore,reactive MgO carbonation significantly reduced the Pb leaching concentration in the high-level Pb-contaminated soil to below 0.1 mg/L.Microscopic analysis revealed that an optimal amount of hydrated magnesium carbonates(HMCs)formed a stable and compact structure with the soil particles.However,long-term carbonation causes red clay particles to become sandy,and excessive HMCs can harm the soil structure.Therefore,to maximize the strength improvement while avoiding structural damage,the carbonation time should be controlled to 1 h.展开更多
The characteristics of reactive magnesia(MgO)-carbonated silt in respect to long-term stability have not been well understood in severely cold climate despite the usage of reactive MgO in enhancing the engineering per...The characteristics of reactive magnesia(MgO)-carbonated silt in respect to long-term stability have not been well understood in severely cold climate despite the usage of reactive MgO in enhancing the engineering performances.Under the binder content of 15%and initial water content of 25%,MgO-admixed silt specimens were carbonized for 3 h and 6 h and then subjected to different numbers of freezingthawing(F-T)cycles.After different F-T cycles,the physico-mechanical properties of MgO-carbonated silt were analyzed in comparison with Portland cement(PC)-stabilized silt through physical and unconfined compression tests.Besides,a series of micro tests on MgO-carbonated specimens was performed including X-ray diffraction(XRD),scanning electron microscopy(SEM)and mercury intrusion porosimetry(MIP)tests.The results demonstrate that both mass change ratio and moisture content of carbonated/stabilized silt decrease,and these values of MgO-carbonated silt are significantly lower while the density is higher compared to PC-stabilized silt.The strengths and moduli of MgO-carbonated silt are still two times higher than those of PC-stabilized specimens and the strength change ratio of keeps above0.8 after F-T cycles.There is no visible transformation between nesquehonite and dypingite/hydromagnesite,although the XRD peaks of nesquehonite decrease and the bonding and filling effects weaken slightly.After 6 and 10 F-T cycles,the pore-size characteristics changed from a unimodal distribution to a three-peak and bimodal distribution,respectively.The total,macro and large pore volumes increase obviously while the medium and small pore volumes decrease except for intra-aggregate pore.The findings show better F-T durability of MgO-carbonated silt,which would be helpful for facilitating the application of MgO carbonation in the soil treatment.展开更多
The overall carbonation of MgO-admixed soil provides not only an efficient and environmentally friendly technique for improving soft ground but also a permanently safe solution for CO_(2) sequestration.To evaluate the...The overall carbonation of MgO-admixed soil provides not only an efficient and environmentally friendly technique for improving soft ground but also a permanently safe solution for CO_(2) sequestration.To evaluate the carbon sequestration potential and promote the carbonation application in soil improvement,a laboratory-scale model investigation is designed under pressurized carbonation considering the influences of MgO dosage and CO_(2) ventilation mode(way).The temperature,dynamic resilience modulus,and dynamic cone penetration(DCP)were tested to assess the carbonation treatment effect.The physical,strength,and microscopic tests were also undertaken to reveal the evolution mechanisms of CO_(2) migration in the MgO-carbonated foundation.The results indicate that the temperature peaks of MgO-treated foundation emerge at w20 h during hydration,but occur at a distance of 0e25 cm from the gas source within 6 h during carbonation.The dynamic resilience moduli of the model foundation increase by more than two times after carbonation and the DCP indices reduce dramatically.As the distance from the gas inlet increases,the bearing capacity,strength,and carbon sequestration decrease,whereas the moisture content increases.Compared to the end ventilation,the middle ventilation produces a higher carbonation degree and a wider carbonation area.The cementation and filling of nesquehonite and dypingite/hydromagnesite are verified to be critical factors for carbonation evolution and enhancing mechanical performances.Finally,the overall carbonation model is described schematically in three stages of CO_(2) migration.The outcomes would help to facilitate the practical application of CO_(2) sequestration in soil treatment.展开更多
Cr_(2)O_(3)-bearing castables bonded with reactive MgO(RM)or calcium aluminate cement(CAC)were studied to evaluate the binder effect on their performance in corrosive environments.The properties of the as-prepared cas...Cr_(2)O_(3)-bearing castables bonded with reactive MgO(RM)or calcium aluminate cement(CAC)were studied to evaluate the binder effect on their performance in corrosive environments.The properties of the as-prepared castables were compared with respect to the differences in phase composition and microstructure.The corrosion behavior of the as-prepared castables by CaO-Al_(2)O_(3)-Fe_(2)O_(3)-SiO_(2)-based slag was systematically compared viarefractory cup testing at 1600℃with respect to the differences in phase composition and microstructure.The analysis indicates that RM bonded castables show higher apparent porosity,lower bulk density and strengths after drying at 110℃and firing at 1300℃,and higher permanent linear change after firing at 1300℃,but better slag corrosion and infiltration resistance compared with CAC bonded castables.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC3707900)the National Natural Science Foundation of China(Grant Nos.42030710 and 42472337).
文摘The presence of heavy metals in soil negatively impacts its mechanical properties.Reactive MgO carbonation presents a promising approach to enhance the solidification of Pb-contaminated sandy soils.However,the mechanical properties and structural behavior of contaminated soils during carbonation can vary significantly due to differences in soil composition.This study examines the potential application and underlying mechanisms of reactive MgO carbonation in improving the mechanical properties of Pb-contaminated red clay.The findings demonstrate that Pb-contaminated red clay transitions from a plastic to a brittle state following reactive MgO carbonation.After 1 h of treatment,the strength of the red clay exceeded 3 MPa,even at high Pb^(2+)concentrations.The deformation modulus to unconfined compressive strength(UCS)ratio was calculated to be 37.761,with the failure strain primarily ranging from 1.5%to 4.0%.A strength prediction model for the reactive MgO-stabilized Pb-contaminated red clay was proposed,which showed good predictive accuracy.Furthermore,reactive MgO carbonation significantly reduced the Pb leaching concentration in the high-level Pb-contaminated soil to below 0.1 mg/L.Microscopic analysis revealed that an optimal amount of hydrated magnesium carbonates(HMCs)formed a stable and compact structure with the soil particles.However,long-term carbonation causes red clay particles to become sandy,and excessive HMCs can harm the soil structure.Therefore,to maximize the strength improvement while avoiding structural damage,the carbonation time should be controlled to 1 h.
基金the support of the National Natural Science Foundation of China(Grant Nos.41902286 and 41972269)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z019026)。
文摘The characteristics of reactive magnesia(MgO)-carbonated silt in respect to long-term stability have not been well understood in severely cold climate despite the usage of reactive MgO in enhancing the engineering performances.Under the binder content of 15%and initial water content of 25%,MgO-admixed silt specimens were carbonized for 3 h and 6 h and then subjected to different numbers of freezingthawing(F-T)cycles.After different F-T cycles,the physico-mechanical properties of MgO-carbonated silt were analyzed in comparison with Portland cement(PC)-stabilized silt through physical and unconfined compression tests.Besides,a series of micro tests on MgO-carbonated specimens was performed including X-ray diffraction(XRD),scanning electron microscopy(SEM)and mercury intrusion porosimetry(MIP)tests.The results demonstrate that both mass change ratio and moisture content of carbonated/stabilized silt decrease,and these values of MgO-carbonated silt are significantly lower while the density is higher compared to PC-stabilized silt.The strengths and moduli of MgO-carbonated silt are still two times higher than those of PC-stabilized specimens and the strength change ratio of keeps above0.8 after F-T cycles.There is no visible transformation between nesquehonite and dypingite/hydromagnesite,although the XRD peaks of nesquehonite decrease and the bonding and filling effects weaken slightly.After 6 and 10 F-T cycles,the pore-size characteristics changed from a unimodal distribution to a three-peak and bimodal distribution,respectively.The total,macro and large pore volumes increase obviously while the medium and small pore volumes decrease except for intra-aggregate pore.The findings show better F-T durability of MgO-carbonated silt,which would be helpful for facilitating the application of MgO carbonation in the soil treatment.
基金funding provided by the National Science Foundation of China(Grant No.41902286)the Open Fund for the State Key Laboratory of Geomechanics and Geotechnical Engineering(Grant No.SKLGME021029)the CRSRI Open Research Program(Grant No.CKWV20221015/KY).
文摘The overall carbonation of MgO-admixed soil provides not only an efficient and environmentally friendly technique for improving soft ground but also a permanently safe solution for CO_(2) sequestration.To evaluate the carbon sequestration potential and promote the carbonation application in soil improvement,a laboratory-scale model investigation is designed under pressurized carbonation considering the influences of MgO dosage and CO_(2) ventilation mode(way).The temperature,dynamic resilience modulus,and dynamic cone penetration(DCP)were tested to assess the carbonation treatment effect.The physical,strength,and microscopic tests were also undertaken to reveal the evolution mechanisms of CO_(2) migration in the MgO-carbonated foundation.The results indicate that the temperature peaks of MgO-treated foundation emerge at w20 h during hydration,but occur at a distance of 0e25 cm from the gas source within 6 h during carbonation.The dynamic resilience moduli of the model foundation increase by more than two times after carbonation and the DCP indices reduce dramatically.As the distance from the gas inlet increases,the bearing capacity,strength,and carbon sequestration decrease,whereas the moisture content increases.Compared to the end ventilation,the middle ventilation produces a higher carbonation degree and a wider carbonation area.The cementation and filling of nesquehonite and dypingite/hydromagnesite are verified to be critical factors for carbonation evolution and enhancing mechanical performances.Finally,the overall carbonation model is described schematically in three stages of CO_(2) migration.The outcomes would help to facilitate the practical application of CO_(2) sequestration in soil treatment.
基金the Joint Founds of R&D Program of Henan Province (222301420034)National Natural Science Foundation of China (51802287)Collaborative Innovation Major Special Project of Zhengzhou (No. 20XTZX12025) for the financial support
文摘Cr_(2)O_(3)-bearing castables bonded with reactive MgO(RM)or calcium aluminate cement(CAC)were studied to evaluate the binder effect on their performance in corrosive environments.The properties of the as-prepared castables were compared with respect to the differences in phase composition and microstructure.The corrosion behavior of the as-prepared castables by CaO-Al_(2)O_(3)-Fe_(2)O_(3)-SiO_(2)-based slag was systematically compared viarefractory cup testing at 1600℃with respect to the differences in phase composition and microstructure.The analysis indicates that RM bonded castables show higher apparent porosity,lower bulk density and strengths after drying at 110℃and firing at 1300℃,and higher permanent linear change after firing at 1300℃,but better slag corrosion and infiltration resistance compared with CAC bonded castables.