A novel architecture of wavelength-division multiplexing/optical code division multiplexing access-passive optical network (WDM/OCDMA-PON) based on superstructure fiber Bragg grating (SSFBG) and wavelength re-modu...A novel architecture of wavelength-division multiplexing/optical code division multiplexing access-passive optical network (WDM/OCDMA-PON) based on superstructure fiber Bragg grating (SSFBG) and wavelength re-modulation technology is proposed. In this scheme, WDM is overlaid on OCDMA channel in a single network by virtue of a kind of SSFBC, and the total capacity of hybrid PON can be extended by regulating the transmission power reasonably. Re, modulation technology is also a good method to save wavelength-specific components at the optical network unit (ONU) and cost of wavelength management on the customer side. In simulation system, 1.25 Gb/s up/downstream data are transported with good performance. In addition the crosstalk penalties from adjacent wavelength channels (with the same OC) are found to be negligible in upstream and downstream transmissions.展开更多
We proposed an arrayed waveguide granting (AWG) based 10 Gbps full duplex wavelength division multiplexing passive optical network (WDM-PON) utiliz- ing a return-to-zero differential phase shift keying (RZ- DPSK...We proposed an arrayed waveguide granting (AWG) based 10 Gbps full duplex wavelength division multiplexing passive optical network (WDM-PON) utiliz- ing a return-to-zero differential phase shift keying (RZ- DPSK) modulation technique for down-link direction and then re-modulation of the downlink (DL) signal for the uplink (UL) direction using intensity modulation technique (OOK) with a data rate of 10 Gbps per channel. A successful cost effective colorless WDM-PON full duplex transmission operation for a data rate of 10Gbps per channel, with a channel spacing of 60 GHz over a distance of 25 km without any optical amplification and dispersion compensation is achieved within low power penalty.展开更多
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2231100)
文摘A novel architecture of wavelength-division multiplexing/optical code division multiplexing access-passive optical network (WDM/OCDMA-PON) based on superstructure fiber Bragg grating (SSFBG) and wavelength re-modulation technology is proposed. In this scheme, WDM is overlaid on OCDMA channel in a single network by virtue of a kind of SSFBC, and the total capacity of hybrid PON can be extended by regulating the transmission power reasonably. Re, modulation technology is also a good method to save wavelength-specific components at the optical network unit (ONU) and cost of wavelength management on the customer side. In simulation system, 1.25 Gb/s up/downstream data are transported with good performance. In addition the crosstalk penalties from adjacent wavelength channels (with the same OC) are found to be negligible in upstream and downstream transmissions.
文摘We proposed an arrayed waveguide granting (AWG) based 10 Gbps full duplex wavelength division multiplexing passive optical network (WDM-PON) utiliz- ing a return-to-zero differential phase shift keying (RZ- DPSK) modulation technique for down-link direction and then re-modulation of the downlink (DL) signal for the uplink (UL) direction using intensity modulation technique (OOK) with a data rate of 10 Gbps per channel. A successful cost effective colorless WDM-PON full duplex transmission operation for a data rate of 10Gbps per channel, with a channel spacing of 60 GHz over a distance of 25 km without any optical amplification and dispersion compensation is achieved within low power penalty.