The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to inv...The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to investigate the impacts of urbanization on ESV in China.However,a comprehensive and dynamic framework to reveal the relationship between ESV and urbanization processes is lacking.This study adopted multi-source datasets to portray China’s urbanization process by integrating population,land,and economic urbanization,eval-uated the ESV changes of 10 categories by gross ecosystem product(GEP)methods,and explored ESV changes within different urbanization scales and speeds.The results showed rapid urbanization in the population,land,and economic dimensions in China,with a faster process of economic urbanization.The ESV also exhibited an increasing trend,with higher levels in the southeastern coastal regions and lower levels in the northwestern regions.Urbanization had positive impacts on ESV across various research units,but the ESV exhibited heteroge-neous changes across different urbanization scales,speeds,and their interactive effects.The response of ESV to dynamic urbanization processes was influenced by socio-economic,ecological,and policy factors;it is essential to combine targeted measures with general ecological product value realization methods in each unit to maximize social-economic-ecological benefits.展开更多
Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,...Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,hazard quotient assessment,and geochemical analyses,such as mineral saturation index,ionic activities,and Gibbs diagrams,to investigate the hydrochemical characteristics,causes,and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions.Approximately 9%of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L^(-1).The predominant water types identified are Cl-Na and HCO_(3)-Na,primarily influenced by evapotranspiration.Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO_(3)-Ca and SO_(4)-Ca,respectively,which are mainly related to the weathering of carbonate,sulfate,and fluorite-containing rocks.Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na^(+),Cl^(-),SO_(4)^(2-),and TDS(r^(2)=0.45-0.64,p<0.01),while in geothermal water,it correlates strongly with pH,K^(+),Ca^(2+),and Mg^(2+)(r^(2)=0.52-0.80,p<0.05).Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater.The enrichment of fluorine in the Red bed groundwater is linked to evaporation,cation exchange and dissolution of fluorite,caused by the lithologic characteristics of the red bed in this area.However,it exhibits minimal correlation with the geothermal water in the adjacent area.The noncarcinogenic health risk assessment indicates that 7%(n=5)of Red bed groundwater points exceed the fluoride safety limit for adults,while 12%(n=8)exceed the limit for children.These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.展开更多
Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distri...Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distribution,and their associated effects on the ice accretion mechanism in the mountainous region of Southwest China.The maximum ice weight was positively correlated with the duration of ice accretion in the mountainous area.The duration of precipitation accounted for less than 20%of the icing period in the mountainous area,with solid-phase hydrometeors being predominant.Icing events,dominated by freezing rain(FR)and mixed rain–graupel(more than 70%),were characterized by glaze or highdensity mixed icing.The relationship between the melting energy and refreezing energy reflected the distribution characteristics of the proportion of FR under mixed-phase precipitation.The intensity of the warm layer and the dominant precipitation phase significantly affected the variations in the microphysical properties of FR.The melting of large dry snowflakes significantly contributed to FR in the mountainous areas,resulting in smaller generalized intercepts and larger mass-weighted mean diameters in the presence of a stronger warm layer.Under a weaker warm layer,the value of the massweighted mean diameter was significantly smaller because of the inability of large solid particles to melt.Finally,FR in the mountainous area dominated the ice weight during the rapid ice accumulation period.A numerical simulation of FR icing on wires effectively revealed the evolution of disaster-causing icing in mountainous areas.展开更多
RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomp...RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomposition reaction characteristics and combustion characteristics of each component of RBOE explosive,the cook-off calculation models of RBOE warhead before and after ignition were established.In addition,closed and vented warheads were designed,as well as fast and slow cook-off test devices.The cook-off characteristics and thermal safety venting area of RBOE warhead were extensively studied.The results showed that the closed RBOE warhead underwent deflagration reaction under both slow and fast cook-off conditions.The calculation result of the shell wall temperature before slow cookoff ignition response of the warhead was 454.06 K,with an error of+1.75%compared to the test result of462.15 K,and the temperature rise rate calculated was in good agreement with the test.The calculated ignition time of RBOE warhead under fast cook-off was 161 s,with an error of+8.8%compared to the test result of 148 s,which verified the accuracy of cook-off model of RBOE warhead before ignition.According to the cook-off calculation model of the warhead after ignition and cook-off test of the vented warhead,it was determined that the thermal safety venting area was 1124.61 mm^(2)for fast cook-off and 530.66 mm~2 for slow cook-off,effectively preventing the reaction of warhead above combustion.Therefore,this study provides a scientific basis for the thermal safety design and evaluation of insensitive warheads.展开更多
Phthalic acid esters(PAEs)are a group of compounds widespread in the environment.To investigate the occurrence and accumulation characteristics of PAEs,surface water samples were collected from the Three Gorges Reserv...Phthalic acid esters(PAEs)are a group of compounds widespread in the environment.To investigate the occurrence and accumulation characteristics of PAEs,surface water samples were collected from the Three Gorges Reservoir area,China.The total concentrations of∑_(11)analyzed PAEs(11PAEs)in the collected water samples ranging from 197.7 to 1,409.3 ng/L(mean±IQR:583.1±308.4 ng/L).While DEHP was the most frequently detected PAE,DnBP and DnNP were the most predominant PAEs in the analyzed water samples with a mean contribution of 63.3%of the∑_(11)PAEs.The concentrations of the∑_(11)PAEs in the water samples from the upper reaches of the Yangtze River were significantly higher than those from themiddle reaches.To better understand the transport and fate of the PAEs,seven detected PAEs were modeled by Quantitative Water Air Sediment Interaction(QWASI).The simulated and measured values were close for most PAEs,and differences are within one order of magnitude even for the worst one.For all simulated PAEs,water and particle inflow were main sources in the reservoir,whereas water outflow and degradation in water were important removal pathways.The contribution ratios of different sources/losses varied fromPAEs,depending on their properties.The calculated risk quotients of DnNP in the Three Gorges Reservoir area whether based onmonitoring or simulating results were all far exceeded the safety threshold value,implying the occurrence of this PAE compound may cause potential adverse effects for the aquatic ecology of the Three Gorges Reservoir area.展开更多
Soil moisture(SM)is a critical variable in terrestrial ecosystems,especially in arid and semi-arid areas where water sources are limited.Despite its importance,understanding the spatiotemporal variations and influenci...Soil moisture(SM)is a critical variable in terrestrial ecosystems,especially in arid and semi-arid areas where water sources are limited.Despite its importance,understanding the spatiotemporal variations and influencing factors of SM in these areas remains insufficient.This study investigated the spatiotemporal variations and influencing factors of SM in arid and semi-arid areas of China by utilizing the extended triple collation(ETC),Mann-Kendall test,Theil-Sen estimator,ridge regression analysis,and other relevant methods.The following findings were obtained:(1)at the pixel scale,the long-term monthly SM data from the European Space Agency Climate Change Initiative(ESA CCI)exhibited the highest correlation coefficient of 0.794 and the lowest root mean square error(RMSE)of 0.014 m^(3)/m^(3);(2)from 2000 to 2022,the study area experienced significant increase in annual average SM,with a rate of 0.408×10^(-3)m^(3)/(m^(3)•a).Moreover,higher altitudes showed a notable upward trend,with SM increasing rates at 0.210×10^(-3)m^(3)/(m^(3)•a)between 1000 and 2000 m,0.530×10^(-3)m^(3)/(m^(3)•a)between 2000 and 4000 m,and 0.760×10^(-3)m^(3)/(m^(3)•a)at altitudes above 4000 m;(3)land surface temperature(LST),root zone soil moisture(RSM)(10-40 cm depth),and normalized difference vegetation index(NDVI)were identified as the primary factors influencing annual average SM,which accounted for 34.37%,24.16%,and 22.64%relative contributions,respectively;and(4)absolute contribution of LST was more significant in subareas at higher altitudes,with average absolute contributions of 0.800×10^(-3)m^(3)/(m^(3)•a)between 2000 and 4000 m and 0.500×10^(-2) m^(3)/(m^(3)•a)above 4000 m.This study reveals the spatiotemporal variations and main influencing factors of SM in Chinese arid and semi-arid areas,highlighting the more pronounced absolute contribution of LST to SM in high-altitude areas,providing valuable insights for ecological research and water resource management in these areas.展开更多
In Niger, irrigated agriculture constitutes the main alternative for meeting family needs. It is within this framework that the state and its partners have adopted strategies to promote irrigated production sites. Thi...In Niger, irrigated agriculture constitutes the main alternative for meeting family needs. It is within this framework that the state and its partners have adopted strategies to promote irrigated production sites. This study was carried out on the Konni irrigated perimeter, the objective of which is to analyze the physical state of hydraulic infrastructures and their operation before the rehabilitation of the said perimeter. The methodology adopted consisted, first of all, of documentary research focused on data relating to this scope and our theme to properly guide the collection of data in the field. The field phase was then followed with an observation of hydraulic infrastructures one by one in order to assess their condition. Thus, the collected data was processed and analyzed. The results of this study show a notable deterioration of hydraulic infrastructure which affected the operating yield of the study area, with the development of barely 700 ha out of 1226 ha planned by the basic study for off-season production (57%). Bathymetric measurements showed that the volume of sediment that accumulated in the Zongo Dam is 1.2 million m3, which reduces its initial capacity from 12 million m3 to 10.8 million m3 after 43 years of service. The expansion joints of the feed canal are all in poor condition. 90% of the total length of the tertiary canals are degraded, 82.32% of the panels of the main canal C are degraded and 17.68% are cracked. All crossing structures are blocked between the RN1 and the Zongo dam. Based on this critical situation, it would be essential to consider rehabilitation work on all infrastructure in order to restore the hydraulic and even agronomic performance of the Konni irrigated area.展开更多
Models that predict a forest stand’s evolution are essential for developing plans for sustainable management.A simple mathematical framework was developed that con-siders the individual tree and stand basal area unde...Models that predict a forest stand’s evolution are essential for developing plans for sustainable management.A simple mathematical framework was developed that con-siders the individual tree and stand basal area under random resource competition and is based on two assumptions:(1)a sigmoid-type stochastic process governs tree and stand basal area dynamics of living and dying trees,and(2)the total area that a tree may potentially occupy determines the number of trees per hectare.The most effective method to satisfy these requirements is formalizing each tree diameter and potentially occupied area using Gompertz-type stochastic differential equations governed by fixed and mixed-effect parameters.Data from permanent experimental plots from long-term Lithuania experiments were used to construct the tree and stand basal area models.The new models were relatively unbiased for live trees of all species,including silver birch(Betula pen-dula Roth)and downy birch(Betula pubescens Ehrh.),[spruce(Picea abies),and pine(Pinus sylvestris)].Less reliable predic-tions were made for the basal area of dying trees.Pines gave the highest accuracy prediction of mean basal area among all live trees.The mean basal area prediction for all dying trees was lower than that for live trees.Among all species,pine also had the best average basal area prediction accuracy for live trees.Newly developed basal area growth and yield models can be recommended despite their complex formulation and implementation challenges,particularly in situations when data is scarce.This is because the newly observed plot provides sufficient information to calibrate random effects.展开更多
While numerous allometric models exist for estimating biomass in trees with single stems,models for multi-stemmed species are scarce.This study presents models for predicting aboveground biomass(AGB)in European hazel(...While numerous allometric models exist for estimating biomass in trees with single stems,models for multi-stemmed species are scarce.This study presents models for predicting aboveground biomass(AGB)in European hazel(Corylus avellana L.),growing in multi-stemmed shrub form.We measured the size and harvested the biomass of 30 European hazel shrubs,drying and weighing their woody parts and leaves separately.AGB(dry mass)and leaf area models were established using a range of predictors,such as the upper height of the shrub,number of shoots per shrub,canopy projection area,stem base diameter of the thickest stem,and the sum of cross-sectional areas of all stems at the stem base.The latter was the best predictor of AGB,but the most practically useful variables,defined as relatively easy to measure by terrestrial or aerial approaches,were the upper height of the shrub and the canopy projection area.The leaf biomass to AGB ratio decreased with the shrub's height.Specific leaf area of shaded leaves increases with shrub height,but that of leaves at the top of the canopy does not change significantly.Given that the upper shrub height and crown projection of European hazel can be estimated using remote sensing approaches,especially UAV and LIDAR,these two variables appear the most promising for effective measurement of AGB in hazel.展开更多
Ta Ngao is the local name in Loc Thanh Village,Bao Lam District,Lam Dong Province.This district is a place that has rich mineral resources in the province with 10%in the total mineral resource value of Southeast.With ...Ta Ngao is the local name in Loc Thanh Village,Bao Lam District,Lam Dong Province.This district is a place that has rich mineral resources in the province with 10%in the total mineral resource value of Southeast.With a waterfall of 7 stages,it seems to be one beautiful site,a big resource for hydroelectricity generation.Besides,there are some natural landscapes and human resource for many forms;this is a conversing place of many peoples;therefore,we have a strong potential to develop the tourism.It is a wild area,everyone plants a little;therefore,here,it has not vegetables.The soil and the efficiency of the trees do not care.Here,we examined the heavy metals on the tomatoes and we studied fertilizers,and we want to improve the soil,to serve the product for the people better.展开更多
The gap between the projected urban areas in the current trend(UAC)and those in the sustainable scenario(UAS)is a critical factor in understanding whether cities can fulfill the requirements of sustainable development...The gap between the projected urban areas in the current trend(UAC)and those in the sustainable scenario(UAS)is a critical factor in understanding whether cities can fulfill the requirements of sustainable development.However,there is a paucity of knowledge on this cutting-edge topic.Given the extensive and rapid urbanization in the United States(U.S.)over the past two centuries,accurately measuring this gap between UAS and UAC is of critical importance for advancing future sustainable urban development,as well as having significant global implications.This study finds that although the 740 U.S.cities have a large UAC in 2100,these cities will encom pass a significant gap from UAC to UAS(approximately 165,000 km2),accounting for 30%UAC at that time.The study also reveals the spatio-temporal heterogeneity of the gap.The gap initially increases before reaching a inflection point in 2090,and it disparates greatly from−100%to 240%at city level.While cities in the Northwestern U.S.maintain UAC that exceeds UAS from 2020 to 2100,cities in other regions shift from UAC that exceeds UAS to UAC that falls short of UAS.Filling the gap without additional urban growth planning could lead to a reduction of crop production ranging from 0.3%to 3%and a 0.68%loss of biomass.Hence,dynamic and forward-looking urban planning is essential for addressing the challenges of sustainable development posed by urbanization,both within the U.S.and globally.展开更多
The purpose of this study was to examine the knowledge,attitude,motivation and behavior of the community before and after the experiment,and also to determine the effect of the experiment on increasing knowledge,attit...The purpose of this study was to examine the knowledge,attitude,motivation and behavior of the community before and after the experiment,and also to determine the effect of the experiment on increasing knowledge,attitude,motivation,and behavior related to the construction of family toilets in coastal areas.The study was conducted in Pangkep and Maros Regencies.Atotal of 50 heads of families were selected as participants using the purposive sampling method.25 participants became the experimental group and 25 people became the control group.The research variables included knowledge,attitudes,motivation,and behavior of the community in building family toilets before and after the experiment.Data collection through tests,questionnaires,and observations to each participant.The research instruments were knowledge tests,questionnaires,and observations.Data analysis used descriptive and inferential statistical analysis,with the t-test.The results of the study showed that based on the experiment,knowledge had a significant effect with a correlation coefficient of 0.94,attitudes had an effect of 0.91,motivation was 0.756,and behavior was 0.865.It can be concluded that the construction of family toilets in the coastal areas of Pangkep and Maros Regencies,before the experiment,the knowledge,attitudes,motivation,and behavior of the community were in the low category,and after the experiment increased significantly to the high category. In addition, the results of the analysis showed that the experiment had a significant effect on increasing theknowledge, attitudes, motivation, and behavior of the community towards the construction of family toilets in coastal areas.展开更多
Mo_(2)CT_(x)MXene is a novel two-dimensional material,which is generally made by the etching of inorganic acid solutions,such as hydrofluoric acid(HF)or hydrochloric acid(HCl).Those solutions are always corrosive and ...Mo_(2)CT_(x)MXene is a novel two-dimensional material,which is generally made by the etching of inorganic acid solutions,such as hydrofluoric acid(HF)or hydrochloric acid(HCl).Those solutions are always corrosive and hazardous.In this paper,a mild organic acid,acetic acid(CH_(3)COOH),was selected to synthesize Mo_(2)CT_(x)MXene.30 mL acetic acid(HAc)with the concentration of 13 mol/L was mixed with 2 g acetate(CH_(3)COONa or CH_(3)COOK)and 10 mL water to make etching solution(NaAc+HAc or KAc+HAc).In the solution,the concentration of CH_(3)COO^(-)was 10 mol/L,the concentration of Na^(+)/K^(+)is 0.6/0.5 mol/L.The pH value is 2.8.Mo_(2)CT_(x)was obtained by hydrothermal etching at 240℃for 1 d.Compared with the general method of HF etching,the etchant is milder and the etching process is safer.On the surface of Mo_(2)CT_(x)nanosheet made by this method,acetate group(CH_(3)COO^(-))was adsorbed as termination,which is larger than the F/O/OH termination of that made by general HF etching.The lattice parameter c(LP c)of Mo_(2)CT_(x)etched with NaAc+HAc/KAc+HAc is 21.09Å/20.89Å.Moreover,the specific surface areas of the samples etched by NaAc+HAc and KAc+HAc were 18.1 m^(2)/g and 14.1 m^(2)/g,respectively,which were much larger than those etched by conventional methods.As the anode of lithium-ion battery,the specific capacity under current density of 100 mA/g at 100 th cycle was 108 mA·h/g,which is higher than the capacity of samples made by general HF etching.This work reports a novel method to make Mo_(2)CT_(x)MXene by the solution of mild acetic acid.The samples made by this method had very high specific surface area and relatively high lithium-storage performance.展开更多
“Go!Faster!”“Pass the ball!”Echoes of encouragement ring across the football field at Yisa Primary School,nestled high in the mountains of Butuo County in Liangshan Yi Autonomous Prefecture,southwest China’s Sich...“Go!Faster!”“Pass the ball!”Echoes of encouragement ring across the football field at Yisa Primary School,nestled high in the mountains of Butuo County in Liangshan Yi Autonomous Prefecture,southwest China’s Sichuan Province.Against a backdrop of cloudwrapped peaks,girls in jerseys dart across the turf with infectious energy.展开更多
Background:Undernutrition poses a major threat for the growth and development of children in remote island regions of Bangladesh.Methods:This study investigated the prevalence and risk predictors of undernutrition amo...Background:Undernutrition poses a major threat for the growth and development of children in remote island regions of Bangladesh.Methods:This study investigated the prevalence and risk predictors of undernutrition among children under five in the island regions of Bangladesh.A cross‐sectional study was conducted in 13 unions across two islands,with a random sample of 549 children.Results:Descriptive analyses showed that underweight(Z‐score<−2),wasting(Z‐score<−2),and stunting(Z‐score<−2)were prevalent,with rates of 36.80%,24.60%,and 47.20%,respectively.Significant predictors of underweight included a history of diarrhea(AOR=2.24,p<0.001),acute respiratory infection(ARI)(AOR=1.84,p<0.01),anemic caregivers(AOR=1.52,p<0.05),and belonging to day labor families(AOR=0.29,p<0.01).Childhood wasting was significantly associated with partial vaccination(AOR=2.84,p<0.001),large family size(AOR=1.79,p<0.05),higher birth order(AOR=0.58,p<0.05),diarrhea(AOR=3.09,p<0.001),anemic mothers(AOR=1.89,p<0.05),primary(AOR=3.35,p<0.05)and secondary(AOR=4.11,p<0.01)maternal education,and fathers working abroad(AOR=0.42,p<0.05)or as daily laborers(AOR=0.17,p<0.001).Stunting was more common among children with partial vaccination,diarrhea,and ARI,and less common among those with a history of fever or those from day laborer families.Conclusion:Overall,undernutrition among children in the island areas of Bangladesh is influenced by multiple factors,necessitating a multisectoral approach to improve their nutritional status.展开更多
[Objectives] To evaluate the utilization and application value of vine plant resources,and enrich the urban vertical greening landscape.[Methods] Route survey and sample plot observation methods were employed to inves...[Objectives] To evaluate the utilization and application value of vine plant resources,and enrich the urban vertical greening landscape.[Methods] Route survey and sample plot observation methods were employed to investigate 96 greening sites in Shenyang area,China.[Results] There are 21 species of vines used in vertical greening,including 15 species of woody vines and 6 species of herbaceous vines.According to the biological characteristics of vine plants and the actual needs of vertical application in landscape greening,a comprehensive evaluation system with one target layer,three criterion layers and a total of 14 indicators was constructed,and the application value of 21 species of vines was evaluated.Based on the comprehensive evaluation value,the vine plants were divided into four grades,and four of them had good application prospects and could be used in urban vertical greening.[Conclusions] The evaluation model and evaluation results will provide a theoretical basis for the rational use of vine plant resources.展开更多
Focusing on comprehensive land consolidation in mountainous areas, this paper explores the connotation of comprehensive land consolidation and its internal logic for promoting rural revitalization. Furthermore, it elu...Focusing on comprehensive land consolidation in mountainous areas, this paper explores the connotation of comprehensive land consolidation and its internal logic for promoting rural revitalization. Furthermore, it elucidates the effectiveness and experience of mountainous area comprehensive land consolidation in the rural revitalization process by using practical cases. The aim is to provide theoretical reference and practical guidance for leveraging the role of comprehensive land consolidation in mountainous areas for rural revitalization, thereby promoting the sustainable utilization of land resources and the coordinated development of the economy and society in mountainous regions.展开更多
In recent years,fueled by significant advancements in oil exploration technologies within the Ordos Basin,an increasing number of low-permeability or ultra-low-permeability reservoirs have been identified.Elucidating ...In recent years,fueled by significant advancements in oil exploration technologies within the Ordos Basin,an increasing number of low-permeability or ultra-low-permeability reservoirs have been identified.Elucidating their reservoir characteristics and formation mechanisms has become a critical priority for sustainable hydrocarbon development.The study focused on the Chang 6 Member of the Upper Triassic Yanchang Formation in the Heshui area of the Ordos Basin,systematically investigating its petrological features,porosity and permeability characteristics,diagenesis,and diagenetic evolution sequence.By integrating core observation,thin-section identification,and physical property measurements,a comprehensive quantitative evaluation of reservoir pore evolution was performed.These analytical outcomes were subsequently applied to simulate hydrocarbon migration and accumulation.These research results will provide a scientific basis for in-depth quantitative study of the pore evolution in ultra-low-permeability oil reservoirs and accurately constructing basin models.As indicated,the reservoir lithology in the study area predominantly comprises siltstone interbedded with mudstone or argillaceous siltstone,characterized by low porosity and permeability.Through diagenetic characteristics-based reconstruction constrained by the existing porosity data,pore evolution during diagenesis was quantitatively modeled.The simulated pore evolution aligns with actual geological observations,validating the reliability of the methodology.Furthermore,the quantified pore evolution results were applied to simulate hydrocarbon migration using PetroMod software,showing that hydrocarbon charging in the basin began at the end of the Late Jurassic(J3),peaking in hydrocarbon generation,expulsion,and accumulation by the end of the Early Cretaceous(K1)and maintaining high accumulation rates until the late Cretaceous,though significantly decreasing at the present stage.The simulation results were verified by comparison with actual drilling data,which confirms their reliability and applicability to other analogous oilfields.展开更多
This study tracked the characteristics of atmospheric wet deposition of the toxic element arsenic(As)at both urban(Guangzhou(GZ))and forested(Dinghushan Natural Reserve(DHS))sites within the Pearl River Delta(PRD)regi...This study tracked the characteristics of atmospheric wet deposition of the toxic element arsenic(As)at both urban(Guangzhou(GZ))and forested(Dinghushan Natural Reserve(DHS))sites within the Pearl River Delta(PRD)region between 2016 and 2019,examining its correlation with rainfall patterns.Additionally,by employing backward trajectory analysis and the potential source contribution function(PSCF)in conjunction with pertinent emission inventories,we pinpointed the main pathways of atmospheric arsenic transport and evaluated the emission contributions from priority source areas.The study revealed that the atmospheric arsenic wet deposition fluxes at the GZ and DHS sites exhibited a trend of increase followed by a decrease over the four-year period.Wet season deposition fluxes were more than triple those of the dry season,with urban site showing a difference of over four times.Notably,wet season As deposition at both sites was predominantly affected by heavy rainfall from marine air masses,constituting 31%of the total deposition.The predominant trajectory directions contributing to arsenic deposition at GZ and DHS were northeast(55%)and south(53%),respectively.The primary source areas for both sites were largely outside the PRD region,with the GZ site having 80%to 95%of its source area in the non-PRD region,compared to 69%to 88%at the DHS site.Furthermore,non-PRD areas contributed approximately 65%to arsenic emissions for both sites,with the industrial sector being the dominant emission source,exceeding 97%of the total emissions.展开更多
Climate change is increasingly affecting all aspects of protected areas management from changes of species ranges to visitor experiences.Due to these impacts,there is a need for managers to take more robust approaches...Climate change is increasingly affecting all aspects of protected areas management from changes of species ranges to visitor experiences.Due to these impacts,there is a need for managers to take more robust approaches to con-sidering the implications of climate change on the overall application and efficacy of protected areas management direction,including the achievement of the goals and objectives contained within management plans.Through a systematic and comprehensive content analysis approach,this study assesses the current extent to which climate change is considered in Canadian protected area management plans.Specifically,we evaluated 63 terrestrial protected area management plans against a set of climate robustness principles.Our content analysis revealed that climate change is currently not effectively factored into Canadian protected area management plans with an average climate robustness score of 18%.Climate robustness score was not found to be correlated with protected area size,International Union for the Conservation of Nature(IUCN)management classification,or jurisdictional authority.Certain climate robustness principles received higher scores across the management plans than oth-ers.For example,the principles of‘diverse knowledge sources’and‘addresses climate change’scored relatively highly whereas‘climate change vulnerability’and‘ecosystem integrity’received the lowest scores.The lack of integration of ecological integrity considerations in management plans was a particularly noteworthy deficiency considering that this guiding principle is the primary legislative objective of many national and sub-national protected areas in Canada.From this assessment,climate change needs to be more effectively and consistently integrated into protected area management plan development and coordinated across associated planning pro-cesses.We discuss the ways in which this can be achieved,for example,by integrating scenario planning into organizational management plan development processes.展开更多
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.41931293)the National Natural Science Foundation of China(Grant No.42271275).
文摘The rapid population and land urbanization not only promoted economic development but also affected the ecosystem service value(ESV).In the context of new-type urbanization and green development,it’s essential to investigate the impacts of urbanization on ESV in China.However,a comprehensive and dynamic framework to reveal the relationship between ESV and urbanization processes is lacking.This study adopted multi-source datasets to portray China’s urbanization process by integrating population,land,and economic urbanization,eval-uated the ESV changes of 10 categories by gross ecosystem product(GEP)methods,and explored ESV changes within different urbanization scales and speeds.The results showed rapid urbanization in the population,land,and economic dimensions in China,with a faster process of economic urbanization.The ESV also exhibited an increasing trend,with higher levels in the southeastern coastal regions and lower levels in the northwestern regions.Urbanization had positive impacts on ESV across various research units,but the ESV exhibited heteroge-neous changes across different urbanization scales,speeds,and their interactive effects.The response of ESV to dynamic urbanization processes was influenced by socio-economic,ecological,and policy factors;it is essential to combine targeted measures with general ecological product value realization methods in each unit to maximize social-economic-ecological benefits.
基金supported by the China Geological Survey Project(Nos.DD20220864 and DD20243077).
文摘Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,hazard quotient assessment,and geochemical analyses,such as mineral saturation index,ionic activities,and Gibbs diagrams,to investigate the hydrochemical characteristics,causes,and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions.Approximately 9%of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L^(-1).The predominant water types identified are Cl-Na and HCO_(3)-Na,primarily influenced by evapotranspiration.Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO_(3)-Ca and SO_(4)-Ca,respectively,which are mainly related to the weathering of carbonate,sulfate,and fluorite-containing rocks.Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na^(+),Cl^(-),SO_(4)^(2-),and TDS(r^(2)=0.45-0.64,p<0.01),while in geothermal water,it correlates strongly with pH,K^(+),Ca^(2+),and Mg^(2+)(r^(2)=0.52-0.80,p<0.05).Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater.The enrichment of fluorine in the Red bed groundwater is linked to evaporation,cation exchange and dissolution of fluorite,caused by the lithologic characteristics of the red bed in this area.However,it exhibits minimal correlation with the geothermal water in the adjacent area.The noncarcinogenic health risk assessment indicates that 7%(n=5)of Red bed groundwater points exceed the fluoride safety limit for adults,while 12%(n=8)exceed the limit for children.These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.
基金funded by the National Natural Science Foundation of China(Grant No.42325503)the Hubei Provincial Natural Science Foundation and the Meteorological Innovation and Development Project of China(Grant Nos.2023AFD096 and 2022CFD122)+1 种基金the Natural Science Foundation of Wuhan(Grant No.2024020901030454)the Beijige Foundation of NJIAS(Grant No.BJG202304)。
文摘Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distribution,and their associated effects on the ice accretion mechanism in the mountainous region of Southwest China.The maximum ice weight was positively correlated with the duration of ice accretion in the mountainous area.The duration of precipitation accounted for less than 20%of the icing period in the mountainous area,with solid-phase hydrometeors being predominant.Icing events,dominated by freezing rain(FR)and mixed rain–graupel(more than 70%),were characterized by glaze or highdensity mixed icing.The relationship between the melting energy and refreezing energy reflected the distribution characteristics of the proportion of FR under mixed-phase precipitation.The intensity of the warm layer and the dominant precipitation phase significantly affected the variations in the microphysical properties of FR.The melting of large dry snowflakes significantly contributed to FR in the mountainous areas,resulting in smaller generalized intercepts and larger mass-weighted mean diameters in the presence of a stronger warm layer.Under a weaker warm layer,the value of the massweighted mean diameter was significantly smaller because of the inability of large solid particles to melt.Finally,FR in the mountainous area dominated the ice weight during the rapid ice accumulation period.A numerical simulation of FR icing on wires effectively revealed the evolution of disaster-causing icing in mountainous areas.
基金National Natural Science Foundation of china(Grant No.12402468)。
文摘RBOE is a new type of DNAN-based high-energy melt-cast mixed explosive,whose safety under thermal stimulation is significantly affected by heating conditions and venting area of the warhead.Based on the thermal decomposition reaction characteristics and combustion characteristics of each component of RBOE explosive,the cook-off calculation models of RBOE warhead before and after ignition were established.In addition,closed and vented warheads were designed,as well as fast and slow cook-off test devices.The cook-off characteristics and thermal safety venting area of RBOE warhead were extensively studied.The results showed that the closed RBOE warhead underwent deflagration reaction under both slow and fast cook-off conditions.The calculation result of the shell wall temperature before slow cookoff ignition response of the warhead was 454.06 K,with an error of+1.75%compared to the test result of462.15 K,and the temperature rise rate calculated was in good agreement with the test.The calculated ignition time of RBOE warhead under fast cook-off was 161 s,with an error of+8.8%compared to the test result of 148 s,which verified the accuracy of cook-off model of RBOE warhead before ignition.According to the cook-off calculation model of the warhead after ignition and cook-off test of the vented warhead,it was determined that the thermal safety venting area was 1124.61 mm^(2)for fast cook-off and 530.66 mm~2 for slow cook-off,effectively preventing the reaction of warhead above combustion.Therefore,this study provides a scientific basis for the thermal safety design and evaluation of insensitive warheads.
基金supported by the Innovation Fund of Nanjing Institute of Environmental Science,Ministry of Ecology and Environment,China(No.ZX2023QT003)the National Natural Science Foundation of China(No.22306130)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2022ZB789)the Ecological Environment Research Project of Jiangsu Province,China(No.2022014).
文摘Phthalic acid esters(PAEs)are a group of compounds widespread in the environment.To investigate the occurrence and accumulation characteristics of PAEs,surface water samples were collected from the Three Gorges Reservoir area,China.The total concentrations of∑_(11)analyzed PAEs(11PAEs)in the collected water samples ranging from 197.7 to 1,409.3 ng/L(mean±IQR:583.1±308.4 ng/L).While DEHP was the most frequently detected PAE,DnBP and DnNP were the most predominant PAEs in the analyzed water samples with a mean contribution of 63.3%of the∑_(11)PAEs.The concentrations of the∑_(11)PAEs in the water samples from the upper reaches of the Yangtze River were significantly higher than those from themiddle reaches.To better understand the transport and fate of the PAEs,seven detected PAEs were modeled by Quantitative Water Air Sediment Interaction(QWASI).The simulated and measured values were close for most PAEs,and differences are within one order of magnitude even for the worst one.For all simulated PAEs,water and particle inflow were main sources in the reservoir,whereas water outflow and degradation in water were important removal pathways.The contribution ratios of different sources/losses varied fromPAEs,depending on their properties.The calculated risk quotients of DnNP in the Three Gorges Reservoir area whether based onmonitoring or simulating results were all far exceeded the safety threshold value,implying the occurrence of this PAE compound may cause potential adverse effects for the aquatic ecology of the Three Gorges Reservoir area.
基金supported by the Natural Science Foundation of Henan Province(252300421290)the National Natural Science Foundation of China(41771438)+1 种基金the Program for Innovative Research Team(in Science and Technology)of Henan University(22IRTSTHN010)the Postgraduate Education Reform and Quality Improvement Project of Henan Province(HNYJS2020JD14).
文摘Soil moisture(SM)is a critical variable in terrestrial ecosystems,especially in arid and semi-arid areas where water sources are limited.Despite its importance,understanding the spatiotemporal variations and influencing factors of SM in these areas remains insufficient.This study investigated the spatiotemporal variations and influencing factors of SM in arid and semi-arid areas of China by utilizing the extended triple collation(ETC),Mann-Kendall test,Theil-Sen estimator,ridge regression analysis,and other relevant methods.The following findings were obtained:(1)at the pixel scale,the long-term monthly SM data from the European Space Agency Climate Change Initiative(ESA CCI)exhibited the highest correlation coefficient of 0.794 and the lowest root mean square error(RMSE)of 0.014 m^(3)/m^(3);(2)from 2000 to 2022,the study area experienced significant increase in annual average SM,with a rate of 0.408×10^(-3)m^(3)/(m^(3)•a).Moreover,higher altitudes showed a notable upward trend,with SM increasing rates at 0.210×10^(-3)m^(3)/(m^(3)•a)between 1000 and 2000 m,0.530×10^(-3)m^(3)/(m^(3)•a)between 2000 and 4000 m,and 0.760×10^(-3)m^(3)/(m^(3)•a)at altitudes above 4000 m;(3)land surface temperature(LST),root zone soil moisture(RSM)(10-40 cm depth),and normalized difference vegetation index(NDVI)were identified as the primary factors influencing annual average SM,which accounted for 34.37%,24.16%,and 22.64%relative contributions,respectively;and(4)absolute contribution of LST was more significant in subareas at higher altitudes,with average absolute contributions of 0.800×10^(-3)m^(3)/(m^(3)•a)between 2000 and 4000 m and 0.500×10^(-2) m^(3)/(m^(3)•a)above 4000 m.This study reveals the spatiotemporal variations and main influencing factors of SM in Chinese arid and semi-arid areas,highlighting the more pronounced absolute contribution of LST to SM in high-altitude areas,providing valuable insights for ecological research and water resource management in these areas.
文摘In Niger, irrigated agriculture constitutes the main alternative for meeting family needs. It is within this framework that the state and its partners have adopted strategies to promote irrigated production sites. This study was carried out on the Konni irrigated perimeter, the objective of which is to analyze the physical state of hydraulic infrastructures and their operation before the rehabilitation of the said perimeter. The methodology adopted consisted, first of all, of documentary research focused on data relating to this scope and our theme to properly guide the collection of data in the field. The field phase was then followed with an observation of hydraulic infrastructures one by one in order to assess their condition. Thus, the collected data was processed and analyzed. The results of this study show a notable deterioration of hydraulic infrastructure which affected the operating yield of the study area, with the development of barely 700 ha out of 1226 ha planned by the basic study for off-season production (57%). Bathymetric measurements showed that the volume of sediment that accumulated in the Zongo Dam is 1.2 million m3, which reduces its initial capacity from 12 million m3 to 10.8 million m3 after 43 years of service. The expansion joints of the feed canal are all in poor condition. 90% of the total length of the tertiary canals are degraded, 82.32% of the panels of the main canal C are degraded and 17.68% are cracked. All crossing structures are blocked between the RN1 and the Zongo dam. Based on this critical situation, it would be essential to consider rehabilitation work on all infrastructure in order to restore the hydraulic and even agronomic performance of the Konni irrigated area.
基金supported by the Horizon Europe Framework Programme(HORIZON),call Teaming for Excellence(HORIZONWIDERA-2022-ACCESS-01-two-stage)-Creation of the Centre of Excellence in Smart Forestry“Forest 4.0”No.101059985″This research was cofunded by FOREST 4.0-“Ekscelencijos centras tvariai miško bioekonomikai vystyti”(Nr.10-042-P-0002).
文摘Models that predict a forest stand’s evolution are essential for developing plans for sustainable management.A simple mathematical framework was developed that con-siders the individual tree and stand basal area under random resource competition and is based on two assumptions:(1)a sigmoid-type stochastic process governs tree and stand basal area dynamics of living and dying trees,and(2)the total area that a tree may potentially occupy determines the number of trees per hectare.The most effective method to satisfy these requirements is formalizing each tree diameter and potentially occupied area using Gompertz-type stochastic differential equations governed by fixed and mixed-effect parameters.Data from permanent experimental plots from long-term Lithuania experiments were used to construct the tree and stand basal area models.The new models were relatively unbiased for live trees of all species,including silver birch(Betula pen-dula Roth)and downy birch(Betula pubescens Ehrh.),[spruce(Picea abies),and pine(Pinus sylvestris)].Less reliable predic-tions were made for the basal area of dying trees.Pines gave the highest accuracy prediction of mean basal area among all live trees.The mean basal area prediction for all dying trees was lower than that for live trees.Among all species,pine also had the best average basal area prediction accuracy for live trees.Newly developed basal area growth and yield models can be recommended despite their complex formulation and implementation challenges,particularly in situations when data is scarce.This is because the newly observed plot provides sufficient information to calibrate random effects.
基金funded by grants EVA4.0 No.Z.02.1.01/0.0/0.0/16_019/0000803 and ITMS2014+313011W580s provided by EU OP RDEin CZ and SKprojects APVV-18-0086,APVV-19-0387,APVV-20-0168,APVV-20-0215 and APVV-22-0056 from the Slovak Research and Development Agencysupport from the European Research Executive Agency for ReForest,Grant Agreement Nr:101060635
文摘While numerous allometric models exist for estimating biomass in trees with single stems,models for multi-stemmed species are scarce.This study presents models for predicting aboveground biomass(AGB)in European hazel(Corylus avellana L.),growing in multi-stemmed shrub form.We measured the size and harvested the biomass of 30 European hazel shrubs,drying and weighing their woody parts and leaves separately.AGB(dry mass)and leaf area models were established using a range of predictors,such as the upper height of the shrub,number of shoots per shrub,canopy projection area,stem base diameter of the thickest stem,and the sum of cross-sectional areas of all stems at the stem base.The latter was the best predictor of AGB,but the most practically useful variables,defined as relatively easy to measure by terrestrial or aerial approaches,were the upper height of the shrub and the canopy projection area.The leaf biomass to AGB ratio decreased with the shrub's height.Specific leaf area of shaded leaves increases with shrub height,but that of leaves at the top of the canopy does not change significantly.Given that the upper shrub height and crown projection of European hazel can be estimated using remote sensing approaches,especially UAV and LIDAR,these two variables appear the most promising for effective measurement of AGB in hazel.
文摘Ta Ngao is the local name in Loc Thanh Village,Bao Lam District,Lam Dong Province.This district is a place that has rich mineral resources in the province with 10%in the total mineral resource value of Southeast.With a waterfall of 7 stages,it seems to be one beautiful site,a big resource for hydroelectricity generation.Besides,there are some natural landscapes and human resource for many forms;this is a conversing place of many peoples;therefore,we have a strong potential to develop the tourism.It is a wild area,everyone plants a little;therefore,here,it has not vegetables.The soil and the efficiency of the trees do not care.Here,we examined the heavy metals on the tomatoes and we studied fertilizers,and we want to improve the soil,to serve the product for the people better.
基金supported by the National Natural Science Foun-dation of China(Grants No.42330103,42271469)the Ningbo Science and Technology Bureau(Grant No.2022Z081).
文摘The gap between the projected urban areas in the current trend(UAC)and those in the sustainable scenario(UAS)is a critical factor in understanding whether cities can fulfill the requirements of sustainable development.However,there is a paucity of knowledge on this cutting-edge topic.Given the extensive and rapid urbanization in the United States(U.S.)over the past two centuries,accurately measuring this gap between UAS and UAC is of critical importance for advancing future sustainable urban development,as well as having significant global implications.This study finds that although the 740 U.S.cities have a large UAC in 2100,these cities will encom pass a significant gap from UAC to UAS(approximately 165,000 km2),accounting for 30%UAC at that time.The study also reveals the spatio-temporal heterogeneity of the gap.The gap initially increases before reaching a inflection point in 2090,and it disparates greatly from−100%to 240%at city level.While cities in the Northwestern U.S.maintain UAC that exceeds UAS from 2020 to 2100,cities in other regions shift from UAC that exceeds UAS to UAC that falls short of UAS.Filling the gap without additional urban growth planning could lead to a reduction of crop production ranging from 0.3%to 3%and a 0.68%loss of biomass.Hence,dynamic and forward-looking urban planning is essential for addressing the challenges of sustainable development posed by urbanization,both within the U.S.and globally.
文摘The purpose of this study was to examine the knowledge,attitude,motivation and behavior of the community before and after the experiment,and also to determine the effect of the experiment on increasing knowledge,attitude,motivation,and behavior related to the construction of family toilets in coastal areas.The study was conducted in Pangkep and Maros Regencies.Atotal of 50 heads of families were selected as participants using the purposive sampling method.25 participants became the experimental group and 25 people became the control group.The research variables included knowledge,attitudes,motivation,and behavior of the community in building family toilets before and after the experiment.Data collection through tests,questionnaires,and observations to each participant.The research instruments were knowledge tests,questionnaires,and observations.Data analysis used descriptive and inferential statistical analysis,with the t-test.The results of the study showed that based on the experiment,knowledge had a significant effect with a correlation coefficient of 0.94,attitudes had an effect of 0.91,motivation was 0.756,and behavior was 0.865.It can be concluded that the construction of family toilets in the coastal areas of Pangkep and Maros Regencies,before the experiment,the knowledge,attitudes,motivation,and behavior of the community were in the low category,and after the experiment increased significantly to the high category. In addition, the results of the analysis showed that the experiment had a significant effect on increasing theknowledge, attitudes, motivation, and behavior of the community towards the construction of family toilets in coastal areas.
基金Projects(52372284,52275187,62004143)supported by the National Natural Science Foundation of ChinaProject(2022BAA084)supported by the Key R&D Program of Hubei Province,ChinaProject(232300421135)supported by the Natural Science Foundation of Henan Province,China。
文摘Mo_(2)CT_(x)MXene is a novel two-dimensional material,which is generally made by the etching of inorganic acid solutions,such as hydrofluoric acid(HF)or hydrochloric acid(HCl).Those solutions are always corrosive and hazardous.In this paper,a mild organic acid,acetic acid(CH_(3)COOH),was selected to synthesize Mo_(2)CT_(x)MXene.30 mL acetic acid(HAc)with the concentration of 13 mol/L was mixed with 2 g acetate(CH_(3)COONa or CH_(3)COOK)and 10 mL water to make etching solution(NaAc+HAc or KAc+HAc).In the solution,the concentration of CH_(3)COO^(-)was 10 mol/L,the concentration of Na^(+)/K^(+)is 0.6/0.5 mol/L.The pH value is 2.8.Mo_(2)CT_(x)was obtained by hydrothermal etching at 240℃for 1 d.Compared with the general method of HF etching,the etchant is milder and the etching process is safer.On the surface of Mo_(2)CT_(x)nanosheet made by this method,acetate group(CH_(3)COO^(-))was adsorbed as termination,which is larger than the F/O/OH termination of that made by general HF etching.The lattice parameter c(LP c)of Mo_(2)CT_(x)etched with NaAc+HAc/KAc+HAc is 21.09Å/20.89Å.Moreover,the specific surface areas of the samples etched by NaAc+HAc and KAc+HAc were 18.1 m^(2)/g and 14.1 m^(2)/g,respectively,which were much larger than those etched by conventional methods.As the anode of lithium-ion battery,the specific capacity under current density of 100 mA/g at 100 th cycle was 108 mA·h/g,which is higher than the capacity of samples made by general HF etching.This work reports a novel method to make Mo_(2)CT_(x)MXene by the solution of mild acetic acid.The samples made by this method had very high specific surface area and relatively high lithium-storage performance.
文摘“Go!Faster!”“Pass the ball!”Echoes of encouragement ring across the football field at Yisa Primary School,nestled high in the mountains of Butuo County in Liangshan Yi Autonomous Prefecture,southwest China’s Sichuan Province.Against a backdrop of cloudwrapped peaks,girls in jerseys dart across the turf with infectious energy.
文摘Background:Undernutrition poses a major threat for the growth and development of children in remote island regions of Bangladesh.Methods:This study investigated the prevalence and risk predictors of undernutrition among children under five in the island regions of Bangladesh.A cross‐sectional study was conducted in 13 unions across two islands,with a random sample of 549 children.Results:Descriptive analyses showed that underweight(Z‐score<−2),wasting(Z‐score<−2),and stunting(Z‐score<−2)were prevalent,with rates of 36.80%,24.60%,and 47.20%,respectively.Significant predictors of underweight included a history of diarrhea(AOR=2.24,p<0.001),acute respiratory infection(ARI)(AOR=1.84,p<0.01),anemic caregivers(AOR=1.52,p<0.05),and belonging to day labor families(AOR=0.29,p<0.01).Childhood wasting was significantly associated with partial vaccination(AOR=2.84,p<0.001),large family size(AOR=1.79,p<0.05),higher birth order(AOR=0.58,p<0.05),diarrhea(AOR=3.09,p<0.001),anemic mothers(AOR=1.89,p<0.05),primary(AOR=3.35,p<0.05)and secondary(AOR=4.11,p<0.01)maternal education,and fathers working abroad(AOR=0.42,p<0.05)or as daily laborers(AOR=0.17,p<0.001).Stunting was more common among children with partial vaccination,diarrhea,and ARI,and less common among those with a history of fever or those from day laborer families.Conclusion:Overall,undernutrition among children in the island areas of Bangladesh is influenced by multiple factors,necessitating a multisectoral approach to improve their nutritional status.
基金Scientific Research Funding Project of Educational Department of Liaoning Province in 2021(LJKZ1243).
文摘[Objectives] To evaluate the utilization and application value of vine plant resources,and enrich the urban vertical greening landscape.[Methods] Route survey and sample plot observation methods were employed to investigate 96 greening sites in Shenyang area,China.[Results] There are 21 species of vines used in vertical greening,including 15 species of woody vines and 6 species of herbaceous vines.According to the biological characteristics of vine plants and the actual needs of vertical application in landscape greening,a comprehensive evaluation system with one target layer,three criterion layers and a total of 14 indicators was constructed,and the application value of 21 species of vines was evaluated.Based on the comprehensive evaluation value,the vine plants were divided into four grades,and four of them had good application prospects and could be used in urban vertical greening.[Conclusions] The evaluation model and evaluation results will provide a theoretical basis for the rational use of vine plant resources.
文摘Focusing on comprehensive land consolidation in mountainous areas, this paper explores the connotation of comprehensive land consolidation and its internal logic for promoting rural revitalization. Furthermore, it elucidates the effectiveness and experience of mountainous area comprehensive land consolidation in the rural revitalization process by using practical cases. The aim is to provide theoretical reference and practical guidance for leveraging the role of comprehensive land consolidation in mountainous areas for rural revitalization, thereby promoting the sustainable utilization of land resources and the coordinated development of the economy and society in mountainous regions.
基金funded by National Science and Technology Major Projects(Grant No.2016ZX05050,2017ZX05001002-008)China National Petroleum Corporation Major Projects(No.2021DJ2203)Key Laboratory of Petroleum Resources Exploration and Evaluation,Gansu Province(No.KLPREEGS-2024-22)。
文摘In recent years,fueled by significant advancements in oil exploration technologies within the Ordos Basin,an increasing number of low-permeability or ultra-low-permeability reservoirs have been identified.Elucidating their reservoir characteristics and formation mechanisms has become a critical priority for sustainable hydrocarbon development.The study focused on the Chang 6 Member of the Upper Triassic Yanchang Formation in the Heshui area of the Ordos Basin,systematically investigating its petrological features,porosity and permeability characteristics,diagenesis,and diagenetic evolution sequence.By integrating core observation,thin-section identification,and physical property measurements,a comprehensive quantitative evaluation of reservoir pore evolution was performed.These analytical outcomes were subsequently applied to simulate hydrocarbon migration and accumulation.These research results will provide a scientific basis for in-depth quantitative study of the pore evolution in ultra-low-permeability oil reservoirs and accurately constructing basin models.As indicated,the reservoir lithology in the study area predominantly comprises siltstone interbedded with mudstone or argillaceous siltstone,characterized by low porosity and permeability.Through diagenetic characteristics-based reconstruction constrained by the existing porosity data,pore evolution during diagenesis was quantitatively modeled.The simulated pore evolution aligns with actual geological observations,validating the reliability of the methodology.Furthermore,the quantified pore evolution results were applied to simulate hydrocarbon migration using PetroMod software,showing that hydrocarbon charging in the basin began at the end of the Late Jurassic(J3),peaking in hydrocarbon generation,expulsion,and accumulation by the end of the Early Cretaceous(K1)and maintaining high accumulation rates until the late Cretaceous,though significantly decreasing at the present stage.The simulation results were verified by comparison with actual drilling data,which confirms their reliability and applicability to other analogous oilfields.
基金supported by the National Natural Science Foundation of China(Nos.42121004,42275107,and 42077205)the National Key Research and Development Plan(No.2023YFC3706202)+1 种基金the Foundational and Applied Basic Research in Guangzhou in 2023(No.2023A04J0251)the Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province(No.2019B121205004)。
文摘This study tracked the characteristics of atmospheric wet deposition of the toxic element arsenic(As)at both urban(Guangzhou(GZ))and forested(Dinghushan Natural Reserve(DHS))sites within the Pearl River Delta(PRD)region between 2016 and 2019,examining its correlation with rainfall patterns.Additionally,by employing backward trajectory analysis and the potential source contribution function(PSCF)in conjunction with pertinent emission inventories,we pinpointed the main pathways of atmospheric arsenic transport and evaluated the emission contributions from priority source areas.The study revealed that the atmospheric arsenic wet deposition fluxes at the GZ and DHS sites exhibited a trend of increase followed by a decrease over the four-year period.Wet season deposition fluxes were more than triple those of the dry season,with urban site showing a difference of over four times.Notably,wet season As deposition at both sites was predominantly affected by heavy rainfall from marine air masses,constituting 31%of the total deposition.The predominant trajectory directions contributing to arsenic deposition at GZ and DHS were northeast(55%)and south(53%),respectively.The primary source areas for both sites were largely outside the PRD region,with the GZ site having 80%to 95%of its source area in the non-PRD region,compared to 69%to 88%at the DHS site.Furthermore,non-PRD areas contributed approximately 65%to arsenic emissions for both sites,with the industrial sector being the dominant emission source,exceeding 97%of the total emissions.
基金supported by the Government of the Northwest Territories in Canada and the John McMurry Research Chair in Environmental Geography at Wilfrid Laurier University.
文摘Climate change is increasingly affecting all aspects of protected areas management from changes of species ranges to visitor experiences.Due to these impacts,there is a need for managers to take more robust approaches to con-sidering the implications of climate change on the overall application and efficacy of protected areas management direction,including the achievement of the goals and objectives contained within management plans.Through a systematic and comprehensive content analysis approach,this study assesses the current extent to which climate change is considered in Canadian protected area management plans.Specifically,we evaluated 63 terrestrial protected area management plans against a set of climate robustness principles.Our content analysis revealed that climate change is currently not effectively factored into Canadian protected area management plans with an average climate robustness score of 18%.Climate robustness score was not found to be correlated with protected area size,International Union for the Conservation of Nature(IUCN)management classification,or jurisdictional authority.Certain climate robustness principles received higher scores across the management plans than oth-ers.For example,the principles of‘diverse knowledge sources’and‘addresses climate change’scored relatively highly whereas‘climate change vulnerability’and‘ecosystem integrity’received the lowest scores.The lack of integration of ecological integrity considerations in management plans was a particularly noteworthy deficiency considering that this guiding principle is the primary legislative objective of many national and sub-national protected areas in Canada.From this assessment,climate change needs to be more effectively and consistently integrated into protected area management plan development and coordinated across associated planning pro-cesses.We discuss the ways in which this can be achieved,for example,by integrating scenario planning into organizational management plan development processes.