This work extends to third-order previously published work on developing the adjoint sensitivity and uncertainty analysis of the numerical model of a <u>p</u>oly<u>e</u>thylene-<u>r</u...This work extends to third-order previously published work on developing the adjoint sensitivity and uncertainty analysis of the numerical model of a <u>p</u>oly<u>e</u>thylene-<u>r</u>eflected <u>p</u>lutonium (acronym: PERP) OECD/NEA reactor physics benchmark. The PERP benchmark comprises 21,976 imprecisely known (uncertain) model parameters. Previous works have used the adjoint sensitivity analysis methodology to compute exactly and efficiently all of the 21,976 first-order and (21,976)<sup>2</sup> second-order sensitivities of the PERP benchmark’s leakage response to all of the benchmark’s uncertain parameters, showing that the largest and most consequential 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities are with respect to the total microscopic cross sections. These results have motivated extending the previous adjoint-based derivations to third-order, leading to the derivation, in this work, of the exact mathematical expressions of the (180)<sup>3</sup> third-order sensitivities of the PERP leakage response with respect to these total microscopic cross sections. The formulas derived in this work are valid not only for the PERP benchmark but can also be used for computing the 3<sup>rd</sup>-order sensitivities of the leakage response of any nuclear system involving fissionable material and internal or external neutron sources. Subsequent works will use the adjoint-based mathematical expressions obtained in this work to compute exactly and efficiently the numerical values of these (180)<sup>3</sup> third-order sensitivities (which turned out to be very large and consequential) and use them for a third-order uncertainty analysis of the PERP benchmark’s leakage response.展开更多
This work presents the results of the exact computation of (180)<sup>3</sup> = 5,832,000 third-order mixed sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP) experimental be...This work presents the results of the exact computation of (180)<sup>3</sup> = 5,832,000 third-order mixed sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP) experimental benchmark with respect to the benchmark’s 180 microscopic total cross sections. This computation was made possible by applying the Third-Order Adjoint Sensitivity Analysis Methodology developed by Cacuci. The numerical results obtained in this work revealed that many of the 3<sup>rd</sup>-order sensitivities are significantly larger than their corresponding 1<sup>st</sup>- and 2<sup>nd</sup>-order ones, which is contrary to the widely held belief that higher-order sensitivities are all much smaller and hence less important than the first-order ones, for reactor physics systems. In particular, the largest 3<sup>rd</sup>-order relative sensitivity is the mixed sensitivity <img src="Edit_754b8437-dfdf-487d-af68-c78c637e6d4e.png" width="180" height="24" alt="" />of the PERP leakage response with respect to the lowest energy-group (30) total cross sections of <sup>1</sup>H (“isotope 6”) and <sup>239</sup>Pu (“isotope 1”). These two isotopes are shown in this work to be the two most important parameters affecting the PERP benchmark’s leakage response. By comparison, the largest 1<sup>st</sup>-order sensitivity is that of the PERP leakage response with respect to the lowest energy-group total cross section of isotope <sup>1</sup>H, having the value <img src="Edit_a5cfcc11-6a99-41ee-b844-a5ee84b454b3.png" width="100" height="24" alt="" />, while the largest 2<sup>nd</sup>-order sensitivity is <img src="Edit_05166a2b-97f7-43f1-98ff-b21368c00228.png" width="120" height="22" alt="" />. The 3<sup>rd</sup>-order sensitivity analysis presented in this work is the first ever such analysis in the field of reactor physics. The consequences of the results presented in this work on the uncertainty analysis of the PERP benchmark’s leakage response will be presented in a subsequent work.展开更多
利用Hardy-Littlewood极大算子的加权有界性和Sharp极大函数的点态估计等工具,给出RD(reverse doubling)-空间上多线性强奇异Calderón-Zygmund算子及其与BMO(bounded mean oscillation)函数生成的多线性交换子在加权乘积Morrey空...利用Hardy-Littlewood极大算子的加权有界性和Sharp极大函数的点态估计等工具,给出RD(reverse doubling)-空间上多线性强奇异Calderón-Zygmund算子及其与BMO(bounded mean oscillation)函数生成的多线性交换子在加权乘积Morrey空间上的有界性.展开更多
文摘This work extends to third-order previously published work on developing the adjoint sensitivity and uncertainty analysis of the numerical model of a <u>p</u>oly<u>e</u>thylene-<u>r</u>eflected <u>p</u>lutonium (acronym: PERP) OECD/NEA reactor physics benchmark. The PERP benchmark comprises 21,976 imprecisely known (uncertain) model parameters. Previous works have used the adjoint sensitivity analysis methodology to compute exactly and efficiently all of the 21,976 first-order and (21,976)<sup>2</sup> second-order sensitivities of the PERP benchmark’s leakage response to all of the benchmark’s uncertain parameters, showing that the largest and most consequential 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities are with respect to the total microscopic cross sections. These results have motivated extending the previous adjoint-based derivations to third-order, leading to the derivation, in this work, of the exact mathematical expressions of the (180)<sup>3</sup> third-order sensitivities of the PERP leakage response with respect to these total microscopic cross sections. The formulas derived in this work are valid not only for the PERP benchmark but can also be used for computing the 3<sup>rd</sup>-order sensitivities of the leakage response of any nuclear system involving fissionable material and internal or external neutron sources. Subsequent works will use the adjoint-based mathematical expressions obtained in this work to compute exactly and efficiently the numerical values of these (180)<sup>3</sup> third-order sensitivities (which turned out to be very large and consequential) and use them for a third-order uncertainty analysis of the PERP benchmark’s leakage response.
文摘This work presents the results of the exact computation of (180)<sup>3</sup> = 5,832,000 third-order mixed sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP) experimental benchmark with respect to the benchmark’s 180 microscopic total cross sections. This computation was made possible by applying the Third-Order Adjoint Sensitivity Analysis Methodology developed by Cacuci. The numerical results obtained in this work revealed that many of the 3<sup>rd</sup>-order sensitivities are significantly larger than their corresponding 1<sup>st</sup>- and 2<sup>nd</sup>-order ones, which is contrary to the widely held belief that higher-order sensitivities are all much smaller and hence less important than the first-order ones, for reactor physics systems. In particular, the largest 3<sup>rd</sup>-order relative sensitivity is the mixed sensitivity <img src="Edit_754b8437-dfdf-487d-af68-c78c637e6d4e.png" width="180" height="24" alt="" />of the PERP leakage response with respect to the lowest energy-group (30) total cross sections of <sup>1</sup>H (“isotope 6”) and <sup>239</sup>Pu (“isotope 1”). These two isotopes are shown in this work to be the two most important parameters affecting the PERP benchmark’s leakage response. By comparison, the largest 1<sup>st</sup>-order sensitivity is that of the PERP leakage response with respect to the lowest energy-group total cross section of isotope <sup>1</sup>H, having the value <img src="Edit_a5cfcc11-6a99-41ee-b844-a5ee84b454b3.png" width="100" height="24" alt="" />, while the largest 2<sup>nd</sup>-order sensitivity is <img src="Edit_05166a2b-97f7-43f1-98ff-b21368c00228.png" width="120" height="22" alt="" />. The 3<sup>rd</sup>-order sensitivity analysis presented in this work is the first ever such analysis in the field of reactor physics. The consequences of the results presented in this work on the uncertainty analysis of the PERP benchmark’s leakage response will be presented in a subsequent work.
文摘利用Hardy-Littlewood极大算子的加权有界性和Sharp极大函数的点态估计等工具,给出RD(reverse doubling)-空间上多线性强奇异Calderón-Zygmund算子及其与BMO(bounded mean oscillation)函数生成的多线性交换子在加权乘积Morrey空间上的有界性.