We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)pho...We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)photons s^(-1)·mrad^(-2)·mm^(-2)per 0.1% bandwidth at 0.6 MeV)photon beams are generated by strong electromagnetic fields induced by current filamentation instability,and up to~10^(6) Breit-Wheeler(BW)pairs can be created per shot.Notably,the usage of hollow plasma channels not only enhances synchrotron radiation,but also allows flexible control of the produced photon beams,ensuring the alignment of the two colliding beams and maximizing the two-photon BW process.This setup has the advantage of a clean background by eliminating the yield from the nonlinear BW process,and the signal-to-noise ratio is higher than 10^(2).展开更多
X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast scien...X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs.展开更多
In this paper,a terahertz slotted waveguide array antenna is designed based on photonic crystal,which can realize efficient radiation of terahertz waves.The electromagnetic wave is fed from the rectangular waveguide a...In this paper,a terahertz slotted waveguide array antenna is designed based on photonic crystal,which can realize efficient radiation of terahertz waves.The electromagnetic wave is fed from the rectangular waveguide at the bottom of the antenna,coupled to photonic crystal waveguide through photonic crystal cavity,and radiated outward through slots at the top layer of antenna.The simulation results show that the antenna achieves a peak gain of 13.45 dBi at 360 GHz,a half-power beam width of 10.9°,and a side lobe level of−13.9 dB.The antenna based on photonic crystal has the advantages of low profile,low loss,and high radiation efficiency,which can be applied to terahertz wireless communication systems.展开更多
A high-sensitivity,low-noise single photon avalanche diode(SPAD)detector was presented based on a 180 nm BCD process.The proposed device utilizes a p-implant layer/high-voltage n-well(HVNW)junction to form a deep aval...A high-sensitivity,low-noise single photon avalanche diode(SPAD)detector was presented based on a 180 nm BCD process.The proposed device utilizes a p-implant layer/high-voltage n-well(HVNW)junction to form a deep avalanche multiplication region for near-infrared(NIR)sensitivity enhancement.By optimizing the device size and electric field of the guard ring,the fill factor(FF)is significantly improved,further increasing photon detection efficiency(PDE).To solve the dark noise caused by the increasing active diameter,a field polysilicon gate structure connected to the p+anode was investigated,effectively suppressing dark count noise by 76.6%.It is experimentally shown that when the active diameter increases from 5 to 10μm,the FF is significantly improved from 20.7%to 39.1%,and thus the peak PDE also rises from 13.3%to 25.8%.At an excess bias voltage of 5 V,a NIR photon detection probability(PDP)of 6.8%at 905 nm,a dark count rate(DCR)of 2.12 cps/μm^(2),an afterpulsing probability(AP)of 1.2%,and a timing jitter of 216 ps are achieved,demonstrating excellent single photon detection performance.展开更多
The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon ...The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon sources in the near-infrared band(λ∼700–1000 nm),several challenges have yet to be addressed for ideal single-photon emission at the telecommunication band.In this study,we present a droplet-epitaxy strategy for O-band to C-band single-photon source-based semiconductor quantum dots(QDs)using metal-organic vaporphase epitaxy(MOVPE).By investigating the growth conditions of the epitaxial process,we have successfully synthesized InAs/InP QDs with narrow emission lines spanning a broad spectral range of λ∼1200–1600 nm.The morphological and optical properties of the samples were characterized using atomic force microscopy and microphotoluminescence spectroscopy.The recorded single-photon purity of a plain QD structure reaches g^((2))(0)=0.16,with a radiative recombination lifetime as short as 1.5 ns.This work provides a crucial platform for future research on integrated microcavity enhancement techniques and coupled QDs with other quantum photonics in the telecom bands,offering significant prospects for quantum network applications.展开更多
In the present work, we designed the new type of photonic crystals (PCs) as reflectors. Reflections from single layer of Al2O3/MgO PC help us in recapturing the light that does escape from the scintillation surface. P...In the present work, we designed the new type of photonic crystals (PCs) as reflectors. Reflections from single layer of Al2O3/MgO PC help us in recapturing the light that does escape from the scintillation surface. Photonic crystals in one dimension array of Al2O3 and MgO with silver at periodicities N = 1, 2 and 3 were used as a reflector around the surface of the scintillation volume. Scintillation detectors are widely used in nuclear medicine. The efficiency is an important parameter for characterizing the capability of the detectors. The counting efficiency of the detectors depends on the light emission induced by radiation. The light then was converted by the photomultiplier tube into electrical pulses. The efficiency may increase by an amount of 1.64% if MgO-Ag photonic crystals are used at periodicity N = 1 as a reflector.展开更多
Based on the present coupled mode theory of the photonic crystal resonator array in this paper, we propose a novel side-coupled waveguide to achieve highly efficient coupling of photonic crystal devices. It is found t...Based on the present coupled mode theory of the photonic crystal resonator array in this paper, we propose a novel side-coupled waveguide to achieve highly efficient coupling of photonic crystal devices. It is found that the coupling efficiency is sensitive to the interval, the total number and the quality factor of the resonator. Considering the coupling efficiency and the coupling region, we select five resonators with an interval of six lattice periods. By optimizing the structure parameters of the waveguide and resonator, the quality factors of the resonator can be modulated and the coupling efficiency of the side-coupled waveguide reaches 95.47% in theory. Compared with other coupling methods, the side-coupled waveguide can realize efficient coupling with a compact structure, a high level of integration and a low degree of operational difficulties.展开更多
We discuss the effects of dissipation on the behavior of single photon transport in a system of coupled cavity arrays, with the two nearest cavities nonlocally coupled to a two-level atom. The single photon transmissi...We discuss the effects of dissipation on the behavior of single photon transport in a system of coupled cavity arrays, with the two nearest cavities nonlocally coupled to a two-level atom. The single photon transmission amplitude is solved exactly by employing the quasi-boson picture. We investigate two different situations of local and nonlocal couplings, respectively. Comparing the dissipative case with the nondissipative one reveals that the dissipation of the system increases the middle dip and lowers the peak of the single photon transmission amplitudes, broadening the line width of the transport spectrum. It should be noted that the influence of the cavity dissipation to the single photon transport spectrum is asymmet- ric. By comparing the nonlocal coupling with the local one, one can find that the enhancement of the middle dip of single photon transmission amplitudes is mostly caused by the atom dissipation and that the reduced peak is mainly caused by the cavity dissipation, no matter whether it is a nonlocal or local coupling case. Whereas in the nonlocal coupling case, when the coupling strength gets stronger, the cavity dissipation has a greater effect on the single photon transport spectrum and the atom dissipation affection becomes weak, so it can be ignored.展开更多
Photon-counting LiDAR using a two-dimensional(2D)array detector has the advantages of high lateral resolution and fast acquisition speed.The non-uniform intensity profile of the illumination beam and non-uniform quant...Photon-counting LiDAR using a two-dimensional(2D)array detector has the advantages of high lateral resolution and fast acquisition speed.The non-uniform intensity profile of the illumination beam and non-uniform quantum efficiency of the detectors in the 2D array deteriorate the imaging quality.Herein,we propose a photon-counting LiDAR system that uses a spatial light modulator to control the spatial intensity to compensate for both the non-uniform intensity profile of the illumination beam,and the variation in the quantum efficiency of the detectors in the 2D array.By using a 635 nm peak wavelength and 4 mW average power semiconductor laser,lab-based experiments at a 4.27 m stand-off distance are performed to verify the effectiveness of the proposed method.Compared with the unmodulated method,the standard deviation of the intensity image of the proposed method is reduced from 0.109 to 0.089 for a whiteboard target,with an average signal photon number of 0.006 per pixel.展开更多
Fast beam range measurements are required to maximize the time available for patient treatment, given that the beam range requires verification with respect to quality assurance to maintain accelerator commissioning s...Fast beam range measurements are required to maximize the time available for patient treatment, given that the beam range requires verification with respect to quality assurance to maintain accelerator commissioning standards and ensure patient safety. A novel beam range monitor based on a plastic scintillator and multi-pixel photon counter (MPPC) arrays is therefore proposed in this paper. The monitor was constructed using 128 plastic scintillator films with a thickness of 1 mm and an active area of 50 × 50 mm^(2). A customized MPPC array read the scintillation light of each film. The advantage of dividing the active detector volume into films is that it intercepts the particle beam and enables direct differential light yield measurement in each film, in addition to depth-light curve generation without the need for image analysis A GEANT4 simulation, including scintillator quenching effects, was implemented, and the results revealed that Birks’ law exhibited a slight little influence on the position of the beam range, only changing the shape and absolute normalization of the Bragg curve, which is appropriate for the calculation of the beam range using the depth-light curve. The performance of the monitor was evaluated using a heavy-ion medical machine in Wuwei City, Gansu Province, China. The beam range measurement accuracy of the monitor was 1 mm, and the maximum difference between the measured and reference ranges was less than0.2%, thus indicating that the monitor can meet clinica carbon ion therapy requirements.展开更多
A detailed study of photon temperatures (Tph) of hard X-ray emission in lower hybrid current drive (LHCD) plasmas is presented. The photon temperature increases with the increase in plasma current and decreases wi...A detailed study of photon temperatures (Tph) of hard X-ray emission in lower hybrid current drive (LHCD) plasmas is presented. The photon temperature increases with the increase in plasma current and decreases with the increase in plasma density. In lower hybrid power and phase scanning experiments; there is no appreciable change in the photon temperature. The numerical results based on ray-tracing calculation and Fokker-Planck solver gives reasonable explanation for the experimental observation. Both experimental and numerical results reveal that the photon temperature depends mainly on global effects of the fast electron population, synergy between the fast electron and the loop voltage and the Coulomb slowing down.展开更多
A simple model for approximate bandgap structure calculation of all-solid photonic bandgap fibre based on an array of rings is proposed. In this model calculated are only the potential modes of a unit cell, which is a...A simple model for approximate bandgap structure calculation of all-solid photonic bandgap fibre based on an array of rings is proposed. In this model calculated are only the potential modes of a unit cell, which is a high-index ring in the low-index background for this fibre, rather than the whole cladding periodic structure based on Bloch's theorem to find the bandgap. Its accuracy is proved by comparing its results with the results obtained by using the accurate full-vector plane-wave method. High speed in computation is its great advantage over the other exact methods, because it only needs to find the roots of one-dimensional analytical expressions. And the results of this model, mode plots, offer an ideal environment to explore the basic properties of photonie bandgap clearly.展开更多
The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the P...The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the PIT sequence is put forward. The joint probability of the PIT sequence is regarded as a function of the distribution probability and used to compare a constant radiation intensity model with the nonhomogeneous Poisson model for the signal detection. The relationship between the number of detected photons and the probabilities of false negative and positive is studied, and the success rate and mean detection time are estimated based on the number of the given photons. For the spacecraft velocity data detection, the changes of time of photon arrival (TOPA) and PIT caused by spacecraft motion are presented first, then the influences on detection are analyzed respectively. By using the analytical pulse profile of PSR B0531+21, the simulation of the Xray pulsar signal detection is implemented. The simulation results verify the effectiveness of the proposed method, and the contrast tests show that the proposed method is suitable for the spacecraft velocity data detection.展开更多
We investigated optically controllable gray-level diffraction from a body-centered tetragonal photonic crystal that was based on an azo-dye-doped holographic polymer dispersed liquid crystal. The sample is fabricated ...We investigated optically controllable gray-level diffraction from a body-centered tetragonal photonic crystal that was based on an azo-dye-doped holographic polymer dispersed liquid crystal. The sample is fabricated by use of two-beam interference with multi-exposure. Bichromatic pumping beams at various intensities were used to pump the sample to change the concentration of the cis isomer and, in turn, modulate the effective index of the photonic crystals as well as their diffraction intensity. Three pumping processes were utilized to produce gray-level switching of diffractive light. This study demonstrates the optimum gray-level to be 15-level of up-step and down-step. The simulation of the diffraction intensity under bichromatic pumping sources was also studied.展开更多
Based on the principle of general relativity,geometrization of interaction,the interaction of the inhomogeneous isotropic medium to light can be equated to a non-Euclidean geometry field just like the situation of gra...Based on the principle of general relativity,geometrization of interaction,the interaction of the inhomogeneous isotropic medium to light can be equated to a non-Euclidean geometry field just like the situation of gravity,i.e.,light travels in the null geodesic in the non-Euclidean curved space-time,which is equivalent to the Fermat principle for the inhomogeneous media.In this paper,the propagation of light in an inhomogeneous media is studied by means of the effective metric theory.The modification to the classical ray equation of photons is derived from the geodesic equation of photon by considering the spin effect of photons,which is induced via the spin-orbit coupling of photons,and the corresponding Hamiltonian of photonis proposed.Based on the spin-orbit coupling of photon,a light splitting phenomenon emerges in the inhomogeneous media,which is the spin hall effect of photon.展开更多
X-ray charge-coupled-device(CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon countin...X-ray charge-coupled-device(CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon counting CCD cameras with the same mode(model: PI-LCX: 1300) are calibrated with quasi-monochromatic x-rays from radioactive sources and a conventional x-ray tube. The details of the CCD response to x-rays are analyzed by using a computer program of multi-pixel analyzing and event-distinguishing capability. The detection efficiency, energy resolution, fraction of multi-pixel events each as a function of x-ray energy, and consistence of two CCD cameras are obtained. The calibrated detection efficiency is consistent with the detection efficiency from Monte Carlo calculations with XOP program. When the multi-pixel event analysis is applied, the CCDs may be used to measure x-rays up to 60 ke V with good energy resolution(E /?E ≈ 100 at60 ke V). The difference in detection efficiency between two CCD cameras is small(5.6% at 5.89 ke V), but the difference in fraction of the single pixel event between them is much larger(25% at 8.04 ke V). The obtained small relative error of detection efficiency(2.4% at 5.89 ke V) makes the high accurate measurement of x-ray yield possible in the laser plasma interaction studies. Based on the discrete calibration results, the calculated detection efficiency with XOP can be used for the whole range of 5 ke V–30 ke V.展开更多
Superbunching pseudothermal light has important applications in studying the second-and higher-order interference of light in quantum optics.Unlike the photon statistics of thermal or pseudothermal light is well under...Superbunching pseudothermal light has important applications in studying the second-and higher-order interference of light in quantum optics.Unlike the photon statistics of thermal or pseudothermal light is well understood,the photon statistics of superbunching pseudothermal light has not been studied yet.In this paper,we will employ single-photon detectors to measure the photon statistics of superbunching pseudothermal light and calculate the degree of second-order coherence.It is found that the larger the value of the degree of second-order coherence of superbunching pseudothermal light is,the more the measured photon distribution deviates from the one of thermal or pseudothermal light in the tail part.The results are helpful to understand the physics of two-photon superbunching with classical light.It is suggested that superbunching pseudothermal light can be employed to generate non-Rayleigh temporal speckles.展开更多
The material identification is a pressing requirement for the sensitive security applications. Dual-energy X-ray computer tomography (DXCT) has been investigated for material identification in the medical and security...The material identification is a pressing requirement for the sensitive security applications. Dual-energy X-ray computer tomography (DXCT) has been investigated for material identification in the medical and security fields. It requires two tomographic images at sufficiently different energies. To discriminate dangerous materials of light elements such as plastic bombs in luggage, it is needed to measure accurately with several tens of kilo electron volts where such materials exhibit significant spectral differences. However, CT images in that energy region often include artifacts from beam hardening. To reduce these artifacts, a novel reconstruction method has been investigated. It is an extension of the Al-gebraic Reconstruction Technique and Total Variation (ART-TV) method that reduces the artifacts in a lower-energy CT image by referencing it to an image obtained at higher energy. The CT image of a titanium sample was recon-structed using this method in order to demonstrate the artifact reduction capability.展开更多
基金supported by the Fund of the National Key Laboratory of Plasma Physics(Grant No.6142A04230204)the National Natural Science Foundation of China(Project No.12075046).
文摘We propose a photon-photon collider based on synchrotron gamma sources driven by relativistic electron beams in hollow plasma channels.The collimated(with a divergence angle of~1 mrad)and ultrabrilliant(>10^(28)photons s^(-1)·mrad^(-2)·mm^(-2)per 0.1% bandwidth at 0.6 MeV)photon beams are generated by strong electromagnetic fields induced by current filamentation instability,and up to~10^(6) Breit-Wheeler(BW)pairs can be created per shot.Notably,the usage of hollow plasma channels not only enhances synchrotron radiation,but also allows flexible control of the produced photon beams,ensuring the alignment of the two colliding beams and maximizing the two-photon BW process.This setup has the advantage of a clean background by eliminating the yield from the nonlinear BW process,and the signal-to-noise ratio is higher than 10^(2).
基金supported by the National Grand Instrument Project No. SQ2019YFF01014400the Natural Science Foundation of China (Grant Nos. 12375147, 12435011, 12075030)+2 种基金the Beijing Outstanding Young Scientist Project, Project for Young Scientists in Basic Research of Chinese Academy of Sciences (YSBR-115)the Beijing Normal University Scientific Research Initiation Fund for Introducing Talents No. 310432104the Fundamental Research Funds for the Central Universities, Peking University
文摘X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs.
基金supported by the National Natural Science Foundation of China(No.62375031)the Basic Research Project of Chongqing Science and Technology Commission(No.CSTC-2021jcyj-bsh0194)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJQN202200602)。
文摘In this paper,a terahertz slotted waveguide array antenna is designed based on photonic crystal,which can realize efficient radiation of terahertz waves.The electromagnetic wave is fed from the rectangular waveguide at the bottom of the antenna,coupled to photonic crystal waveguide through photonic crystal cavity,and radiated outward through slots at the top layer of antenna.The simulation results show that the antenna achieves a peak gain of 13.45 dBi at 360 GHz,a half-power beam width of 10.9°,and a side lobe level of−13.9 dB.The antenna based on photonic crystal has the advantages of low profile,low loss,and high radiation efficiency,which can be applied to terahertz wireless communication systems.
基金supported by the National Natural Science Foundation of China under Grant 62171233the Natural Science Foundation of China,Jiangsu Province under Grant BK20241891the Jiangsu Province Graduate Research and Practice Innovation Plan under Grants SJCX24_0313 and KYCX24_1169。
文摘A high-sensitivity,low-noise single photon avalanche diode(SPAD)detector was presented based on a 180 nm BCD process.The proposed device utilizes a p-implant layer/high-voltage n-well(HVNW)junction to form a deep avalanche multiplication region for near-infrared(NIR)sensitivity enhancement.By optimizing the device size and electric field of the guard ring,the fill factor(FF)is significantly improved,further increasing photon detection efficiency(PDE).To solve the dark noise caused by the increasing active diameter,a field polysilicon gate structure connected to the p+anode was investigated,effectively suppressing dark count noise by 76.6%.It is experimentally shown that when the active diameter increases from 5 to 10μm,the FF is significantly improved from 20.7%to 39.1%,and thus the peak PDE also rises from 13.3%to 25.8%.At an excess bias voltage of 5 V,a NIR photon detection probability(PDP)of 6.8%at 905 nm,a dark count rate(DCR)of 2.12 cps/μm^(2),an afterpulsing probability(AP)of 1.2%,and a timing jitter of 216 ps are achieved,demonstrating excellent single photon detection performance.
基金supported by the National Natural Science Foundation of China (Grant Nos.12494604,12393834,12393831,62274014,6223501662335015)the National Key R&D Program of China (Grant No.2024YFA1208900)。
文摘The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon sources in the near-infrared band(λ∼700–1000 nm),several challenges have yet to be addressed for ideal single-photon emission at the telecommunication band.In this study,we present a droplet-epitaxy strategy for O-band to C-band single-photon source-based semiconductor quantum dots(QDs)using metal-organic vaporphase epitaxy(MOVPE).By investigating the growth conditions of the epitaxial process,we have successfully synthesized InAs/InP QDs with narrow emission lines spanning a broad spectral range of λ∼1200–1600 nm.The morphological and optical properties of the samples were characterized using atomic force microscopy and microphotoluminescence spectroscopy.The recorded single-photon purity of a plain QD structure reaches g^((2))(0)=0.16,with a radiative recombination lifetime as short as 1.5 ns.This work provides a crucial platform for future research on integrated microcavity enhancement techniques and coupled QDs with other quantum photonics in the telecom bands,offering significant prospects for quantum network applications.
文摘In the present work, we designed the new type of photonic crystals (PCs) as reflectors. Reflections from single layer of Al2O3/MgO PC help us in recapturing the light that does escape from the scintillation surface. Photonic crystals in one dimension array of Al2O3 and MgO with silver at periodicities N = 1, 2 and 3 were used as a reflector around the surface of the scintillation volume. Scintillation detectors are widely used in nuclear medicine. The efficiency is an important parameter for characterizing the capability of the detectors. The counting efficiency of the detectors depends on the light emission induced by radiation. The light then was converted by the photomultiplier tube into electrical pulses. The efficiency may increase by an amount of 1.64% if MgO-Ag photonic crystals are used at periodicity N = 1 as a reflector.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60877031)
文摘Based on the present coupled mode theory of the photonic crystal resonator array in this paper, we propose a novel side-coupled waveguide to achieve highly efficient coupling of photonic crystal devices. It is found that the coupling efficiency is sensitive to the interval, the total number and the quality factor of the resonator. Considering the coupling efficiency and the coupling region, we select five resonators with an interval of six lattice periods. By optimizing the structure parameters of the waveguide and resonator, the quality factors of the resonator can be modulated and the coupling efficiency of the side-coupled waveguide reaches 95.47% in theory. Compared with other coupling methods, the side-coupled waveguide can realize efficient coupling with a compact structure, a high level of integration and a low degree of operational difficulties.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10704031,10874235,11274148,and 10934010)
文摘We discuss the effects of dissipation on the behavior of single photon transport in a system of coupled cavity arrays, with the two nearest cavities nonlocally coupled to a two-level atom. The single photon transmission amplitude is solved exactly by employing the quasi-boson picture. We investigate two different situations of local and nonlocal couplings, respectively. Comparing the dissipative case with the nondissipative one reveals that the dissipation of the system increases the middle dip and lowers the peak of the single photon transmission amplitudes, broadening the line width of the transport spectrum. It should be noted that the influence of the cavity dissipation to the single photon transport spectrum is asymmet- ric. By comparing the nonlocal coupling with the local one, one can find that the enhancement of the middle dip of single photon transmission amplitudes is mostly caused by the atom dissipation and that the reduced peak is mainly caused by the cavity dissipation, no matter whether it is a nonlocal or local coupling case. Whereas in the nonlocal coupling case, when the coupling strength gets stronger, the cavity dissipation has a greater effect on the single photon transport spectrum and the atom dissipation affection becomes weak, so it can be ignored.
文摘Photon-counting LiDAR using a two-dimensional(2D)array detector has the advantages of high lateral resolution and fast acquisition speed.The non-uniform intensity profile of the illumination beam and non-uniform quantum efficiency of the detectors in the 2D array deteriorate the imaging quality.Herein,we propose a photon-counting LiDAR system that uses a spatial light modulator to control the spatial intensity to compensate for both the non-uniform intensity profile of the illumination beam,and the variation in the quantum efficiency of the detectors in the 2D array.By using a 635 nm peak wavelength and 4 mW average power semiconductor laser,lab-based experiments at a 4.27 m stand-off distance are performed to verify the effectiveness of the proposed method.Compared with the unmodulated method,the standard deviation of the intensity image of the proposed method is reduced from 0.109 to 0.089 for a whiteboard target,with an average signal photon number of 0.006 per pixel.
基金supported by the National Natural Science Foundation of China (Nos.11675232 and 12175286)。
文摘Fast beam range measurements are required to maximize the time available for patient treatment, given that the beam range requires verification with respect to quality assurance to maintain accelerator commissioning standards and ensure patient safety. A novel beam range monitor based on a plastic scintillator and multi-pixel photon counter (MPPC) arrays is therefore proposed in this paper. The monitor was constructed using 128 plastic scintillator films with a thickness of 1 mm and an active area of 50 × 50 mm^(2). A customized MPPC array read the scintillation light of each film. The advantage of dividing the active detector volume into films is that it intercepts the particle beam and enables direct differential light yield measurement in each film, in addition to depth-light curve generation without the need for image analysis A GEANT4 simulation, including scintillator quenching effects, was implemented, and the results revealed that Birks’ law exhibited a slight little influence on the position of the beam range, only changing the shape and absolute normalization of the Bragg curve, which is appropriate for the calculation of the beam range using the depth-light curve. The performance of the monitor was evaluated using a heavy-ion medical machine in Wuwei City, Gansu Province, China. The beam range measurement accuracy of the monitor was 1 mm, and the maximum difference between the measured and reference ranges was less than0.2%, thus indicating that the monitor can meet clinica carbon ion therapy requirements.
基金supported by National Natural Science Foundation of China(Nos.10235010,10725523)
文摘A detailed study of photon temperatures (Tph) of hard X-ray emission in lower hybrid current drive (LHCD) plasmas is presented. The photon temperature increases with the increase in plasma current and decreases with the increase in plasma density. In lower hybrid power and phase scanning experiments; there is no appreciable change in the photon temperature. The numerical results based on ray-tracing calculation and Fokker-Planck solver gives reasonable explanation for the experimental observation. Both experimental and numerical results reveal that the photon temperature depends mainly on global effects of the fast electron population, synergy between the fast electron and the loop voltage and the Coulomb slowing down.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2004AA31G200)Beijing Jiaotong University Foundation, China (Grant No 2005SM002)
文摘A simple model for approximate bandgap structure calculation of all-solid photonic bandgap fibre based on an array of rings is proposed. In this model calculated are only the potential modes of a unit cell, which is a high-index ring in the low-index background for this fibre, rather than the whole cladding periodic structure based on Bloch's theorem to find the bandgap. Its accuracy is proved by comparing its results with the results obtained by using the accurate full-vector plane-wave method. High speed in computation is its great advantage over the other exact methods, because it only needs to find the roots of one-dimensional analytical expressions. And the results of this model, mode plots, offer an ideal environment to explore the basic properties of photonie bandgap clearly.
基金supported by the National Natural Science Foundation of China (61172138)the Open Fund of Key Laboratory of Precision Navigation and Technology,National Time Service Center,CAS (2012PNTT02)
文摘The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the PIT sequence is put forward. The joint probability of the PIT sequence is regarded as a function of the distribution probability and used to compare a constant radiation intensity model with the nonhomogeneous Poisson model for the signal detection. The relationship between the number of detected photons and the probabilities of false negative and positive is studied, and the success rate and mean detection time are estimated based on the number of the given photons. For the spacecraft velocity data detection, the changes of time of photon arrival (TOPA) and PIT caused by spacecraft motion are presented first, then the influences on detection are analyzed respectively. By using the analytical pulse profile of PSR B0531+21, the simulation of the Xray pulsar signal detection is implemented. The simulation results verify the effectiveness of the proposed method, and the contrast tests show that the proposed method is suitable for the spacecraft velocity data detection.
文摘We investigated optically controllable gray-level diffraction from a body-centered tetragonal photonic crystal that was based on an azo-dye-doped holographic polymer dispersed liquid crystal. The sample is fabricated by use of two-beam interference with multi-exposure. Bichromatic pumping beams at various intensities were used to pump the sample to change the concentration of the cis isomer and, in turn, modulate the effective index of the photonic crystals as well as their diffraction intensity. Three pumping processes were utilized to produce gray-level switching of diffractive light. This study demonstrates the optimum gray-level to be 15-level of up-step and down-step. The simulation of the diffraction intensity under bichromatic pumping sources was also studied.
基金Project supported by the Natural Science Foundation of Shanghai (Grant No.09ZR1410900)the Shanghai Leading Academic Discipline Project (Grant No.S30105)
文摘Based on the principle of general relativity,geometrization of interaction,the interaction of the inhomogeneous isotropic medium to light can be equated to a non-Euclidean geometry field just like the situation of gravity,i.e.,light travels in the null geodesic in the non-Euclidean curved space-time,which is equivalent to the Fermat principle for the inhomogeneous media.In this paper,the propagation of light in an inhomogeneous media is studied by means of the effective metric theory.The modification to the classical ray equation of photons is derived from the geodesic equation of photon by considering the spin effect of photons,which is induced via the spin-orbit coupling of photons,and the corresponding Hamiltonian of photonis proposed.Based on the spin-orbit coupling of photon,a light splitting phenomenon emerges in the inhomogeneous media,which is the spin hall effect of photon.
基金Project supported by the Science Foundation of China Academy of Engineering Physics(Grant Nos.2013A0103003 and 2012B0102008)the National High-Tech Inertial Confinement Fusion Committee of China
文摘X-ray charge-coupled-device(CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon counting CCD cameras with the same mode(model: PI-LCX: 1300) are calibrated with quasi-monochromatic x-rays from radioactive sources and a conventional x-ray tube. The details of the CCD response to x-rays are analyzed by using a computer program of multi-pixel analyzing and event-distinguishing capability. The detection efficiency, energy resolution, fraction of multi-pixel events each as a function of x-ray energy, and consistence of two CCD cameras are obtained. The calibrated detection efficiency is consistent with the detection efficiency from Monte Carlo calculations with XOP program. When the multi-pixel event analysis is applied, the CCDs may be used to measure x-rays up to 60 ke V with good energy resolution(E /?E ≈ 100 at60 ke V). The difference in detection efficiency between two CCD cameras is small(5.6% at 5.89 ke V), but the difference in fraction of the single pixel event between them is much larger(25% at 8.04 ke V). The obtained small relative error of detection efficiency(2.4% at 5.89 ke V) makes the high accurate measurement of x-ray yield possible in the laser plasma interaction studies. Based on the discrete calibration results, the calculated detection efficiency with XOP can be used for the whole range of 5 ke V–30 ke V.
基金supported by the Shanxi Key Research and Development Project,China(Grant No.2019ZDLGY09-08)Shanxi Nature and Science Basic Research Project,China(Grant No.2019JLP-18)Open fund of MOE Key Laboratory of Weak-Light Nonlinear Photonics(Grant No.OS19-2)。
文摘Superbunching pseudothermal light has important applications in studying the second-and higher-order interference of light in quantum optics.Unlike the photon statistics of thermal or pseudothermal light is well understood,the photon statistics of superbunching pseudothermal light has not been studied yet.In this paper,we will employ single-photon detectors to measure the photon statistics of superbunching pseudothermal light and calculate the degree of second-order coherence.It is found that the larger the value of the degree of second-order coherence of superbunching pseudothermal light is,the more the measured photon distribution deviates from the one of thermal or pseudothermal light in the tail part.The results are helpful to understand the physics of two-photon superbunching with classical light.It is suggested that superbunching pseudothermal light can be employed to generate non-Rayleigh temporal speckles.
文摘The material identification is a pressing requirement for the sensitive security applications. Dual-energy X-ray computer tomography (DXCT) has been investigated for material identification in the medical and security fields. It requires two tomographic images at sufficiently different energies. To discriminate dangerous materials of light elements such as plastic bombs in luggage, it is needed to measure accurately with several tens of kilo electron volts where such materials exhibit significant spectral differences. However, CT images in that energy region often include artifacts from beam hardening. To reduce these artifacts, a novel reconstruction method has been investigated. It is an extension of the Al-gebraic Reconstruction Technique and Total Variation (ART-TV) method that reduces the artifacts in a lower-energy CT image by referencing it to an image obtained at higher energy. The CT image of a titanium sample was recon-structed using this method in order to demonstrate the artifact reduction capability.