CSES(China Seismo-Electromagnetic Satellite) is a mission developed by CNSA(Chinese National Space Administration) and ASI(Italian Space Agency), to investigate the near-Earth electromagnetic, plasma and particle envi...CSES(China Seismo-Electromagnetic Satellite) is a mission developed by CNSA(Chinese National Space Administration) and ASI(Italian Space Agency), to investigate the near-Earth electromagnetic, plasma and particle environment, for studying the seismo-associated disturbances in the ionosphere-magnetosphere transition zone. The anthropogenic and electromagnetic noise,as well as the natural non-seismic electromagnetic emissions is mainly due to tropospheric activity. In particular, the mission aims to confirming the existence of possible temporal correlations between the occurrence of earthquakes for medium and strong magnitude and the observation in space of electromagnetic perturbations, plasma variations and precipitation of bursts with highenergy charged particles from the inner Van Allen belt. In this framework, the high energy particle detector(HEPD) of the CSES mission has been developed by the Italian LIMADOU Collaboration. HEPD is an advanced detector based on a tower of scintillators and a silicon tracker that provides good energy and angular resolution and a wide angular acceptance, for electrons of 3–100 Me V, protons of 30–200 Me V and light nuclei up to the oxygen. CSES satellite has been launched on February 2^(nd), 2018 from the Jiuquan Satellite Launch Center(China).展开更多
Hot Universe Baryon Surveyor(HUBS)is a proposed space‐borne observatory for X‐ray astronomy.The primary scientific objectives of the mission are to fill a void in probing the ecosystem of galaxies and thus to advanc...Hot Universe Baryon Surveyor(HUBS)is a proposed space‐borne observatory for X‐ray astronomy.The primary scientific objectives of the mission are to fill a void in probing the ecosystem of galaxies and thus to advance our understanding of galaxy formation and evolution,which is of fundamental importance in cosmology.More specifically,HUBS aims at directly detecting soft X‐ray emission from diffuse gas of temperature exceeding 106 K,which is theoretically postulated to permeate the large structures in the cosmic web and also fill the extended halo of galaxies.However,although some indirect evidence exists,the presence of such hot gas has yet to be well established observationally,due to the lack of effective tools to probe it.In this paper,we describe the design of HUBS,focusing on its scientific payload,which employs superconducting technologies in the detector system,and particularly on progress in the development of superconducting microcalorimeters.展开更多
基金supported by the Italian Space Agency in the framework of the“Accordo Attuativo n.2016-16-H0 Progetto Limadou Fase E/Scienza”(CUP F12F1600011005)
文摘CSES(China Seismo-Electromagnetic Satellite) is a mission developed by CNSA(Chinese National Space Administration) and ASI(Italian Space Agency), to investigate the near-Earth electromagnetic, plasma and particle environment, for studying the seismo-associated disturbances in the ionosphere-magnetosphere transition zone. The anthropogenic and electromagnetic noise,as well as the natural non-seismic electromagnetic emissions is mainly due to tropospheric activity. In particular, the mission aims to confirming the existence of possible temporal correlations between the occurrence of earthquakes for medium and strong magnitude and the observation in space of electromagnetic perturbations, plasma variations and precipitation of bursts with highenergy charged particles from the inner Van Allen belt. In this framework, the high energy particle detector(HEPD) of the CSES mission has been developed by the Italian LIMADOU Collaboration. HEPD is an advanced detector based on a tower of scintillators and a silicon tracker that provides good energy and angular resolution and a wide angular acceptance, for electrons of 3–100 Me V, protons of 30–200 Me V and light nuclei up to the oxygen. CSES satellite has been launched on February 2^(nd), 2018 from the Jiuquan Satellite Launch Center(China).
基金SifanWang and Yanling Chen also wish to acknowledge support from China Scholarship Coun-cil.This work was supported inpartby National Natural Science Foun-dation of China(NSFC)through Grant 11927805,and by China National Space Administration(CNSA)through a technology develop-ment grant.
文摘Hot Universe Baryon Surveyor(HUBS)is a proposed space‐borne observatory for X‐ray astronomy.The primary scientific objectives of the mission are to fill a void in probing the ecosystem of galaxies and thus to advance our understanding of galaxy formation and evolution,which is of fundamental importance in cosmology.More specifically,HUBS aims at directly detecting soft X‐ray emission from diffuse gas of temperature exceeding 106 K,which is theoretically postulated to permeate the large structures in the cosmic web and also fill the extended halo of galaxies.However,although some indirect evidence exists,the presence of such hot gas has yet to be well established observationally,due to the lack of effective tools to probe it.In this paper,we describe the design of HUBS,focusing on its scientific payload,which employs superconducting technologies in the detector system,and particularly on progress in the development of superconducting microcalorimeters.