期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
1D Convolutional Seismic Event Classification Method Based on Attention Mechanism and Light Inception Block
1
作者 Yong-ming Huang Yi Xie +4 位作者 Fa-jun Miao Yong-sheng Ma Gao-chuan Liu Guo-bao Zhang Yun-tian Teng 《Applied Geophysics》 2025年第4期1387-1398,1501,共13页
Waveforms of artificially induced explosions and collapse events recorded by the seismic network share similarities with natural earthquakes.Failure to identify and screen them in a timely manner can introduce confusi... Waveforms of artificially induced explosions and collapse events recorded by the seismic network share similarities with natural earthquakes.Failure to identify and screen them in a timely manner can introduce confusion into the earthquake catalog established using these recordings,thereby impacting future seismological research.Therefore,the identification and separation of natural earthquakes from continuous seismic signals contribute to the monitoring and early warning of destructive tectonic earthquakes.A 1D convolutional neural network(CNN)is proposed for seismic event classification using an efficient channel attention mechanism and an improved light inception block.A total of 9937 seismic sample records are obtained after waveform interception,filtering,and normalization.The proposed model can obtain better classification performance than other major existing methods,exhibiting 96.79%overall classification accuracy and 96.73%,94.85%,and 96.35%classification accuracy for natural seismic events,collapse events,and blasting events,respectively.Meanwhile,the proposed model is lighter than the 2D convolutional and common inception networks.We also apply the proposed model to the seismic data recorded at the University of Utah seismograph stations and compare its performance with that of the CNN-waveform model. 展开更多
关键词 Attention mechanisms Seismic classification CNNS raw seismic waveform
在线阅读 下载PDF
基于原始波残差网络的语音欺骗检测 被引量:2
2
作者 刘畅 魏为民 +1 位作者 栗风永 才智 《计算机工程与设计》 北大核心 2023年第3期829-835,共7页
针对传统检测方法在不同情境下仅提取语音单一特征可能会导致丢失语音中的重要信息的问题,提出一种基于原始波残差网络的语音欺骗检测方法。取代单一语音特征,直接在语音原始波形中提取帧级特征作为输入;基于参数化Sinc函数重点学习低... 针对传统检测方法在不同情境下仅提取语音单一特征可能会导致丢失语音中的重要信息的问题,提出一种基于原始波残差网络的语音欺骗检测方法。取代单一语音特征,直接在语音原始波形中提取帧级特征作为输入;基于参数化Sinc函数重点学习低频和高频截止频率,减少原始波建模参数数量;搭建残差网络模型作为后端分类器,改进激活函数并增加跳转连接模块以获得更好的泛化性能。实验数据集采用ASVspoof2019大赛官方数据集,实验结果表明,在逻辑攻击场景及物理攻击场景中,提出模型均相对基线系统具有更低的等错误率。 展开更多
关键词 语音欺骗检测 原始波 Sinc函数 建模参数 残差网络 激活函数 等错误率
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部