An approach for coal-based direct reduction of vanadium−titanium magnetite(VTM)raw ore was proposed.Under the optimal reduction conditions with reduction temperature of 1140℃,reduction time of 3 h,C-to-Fe molar ratio...An approach for coal-based direct reduction of vanadium−titanium magnetite(VTM)raw ore was proposed.Under the optimal reduction conditions with reduction temperature of 1140℃,reduction time of 3 h,C-to-Fe molar ratio of 1.2꞉1,and pre-oxidation temperature of 900℃,the iron metallization degree is 97.8%.Ultimately,magnetic separation yields an iron concentrate with an Fe content of 76.78 wt.%and efficiency of 93.41%,while the magnetic separation slag has a Ti grade and recovery of 9.36 wt.%and 87.07%,respectively,with a titanium loss of 12.93%.This new strategy eliminates the beneficiation process of VTM raw ore,effectively reduces the Ti content in the iron concentrate,and improves the comprehensive utilization of valuable metals.展开更多
基金funded by the National Natural Science Foundation of China(Nos.U20A20145,51774205)the Open Project from Engineering Research Center of the Ministry of Education,Sichuan University,China.
文摘An approach for coal-based direct reduction of vanadium−titanium magnetite(VTM)raw ore was proposed.Under the optimal reduction conditions with reduction temperature of 1140℃,reduction time of 3 h,C-to-Fe molar ratio of 1.2꞉1,and pre-oxidation temperature of 900℃,the iron metallization degree is 97.8%.Ultimately,magnetic separation yields an iron concentrate with an Fe content of 76.78 wt.%and efficiency of 93.41%,while the magnetic separation slag has a Ti grade and recovery of 9.36 wt.%and 87.07%,respectively,with a titanium loss of 12.93%.This new strategy eliminates the beneficiation process of VTM raw ore,effectively reduces the Ti content in the iron concentrate,and improves the comprehensive utilization of valuable metals.