期刊文献+
共找到9,301篇文章
< 1 2 250 >
每页显示 20 50 100
Impact behavior and strain rate effects of artificial limestone by MICP 被引量:1
1
作者 Yaru Lv Lin Wu +2 位作者 Zhigang Duan Yuchen Su Dongdong Zhang 《Biogeotechnics》 2025年第2期72-80,共9页
Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an... Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance. 展开更多
关键词 Weakly limestone MICP artificial cementation Calcareous sand Limestone impact behavior Strain rate effects
暂未订购
Bending Strength of Glass Materials under Strong Dynamic Impact and Its Strain Rate Effects 被引量:1
2
作者 LIU Xiaogen QI Shuang +2 位作者 WEI Shaoshan WAN Detian JIN Chunxia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1358-1364,共7页
Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and dif... Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading. 展开更多
关键词 glass materials strong dynamic impact bending strength strain rate effect dynamic enhancement factor
原文传递
Mechanical properties of deep sandstones under loading rate effect 被引量:6
3
作者 ZHANG Jun-wen DING Lu-jiang +2 位作者 SONG Zhi-xiang FANWen-bing WANG Shan-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1933-1944,共12页
The advance speed of the working face in coal mines can significantly affect the fluctuation frequency of abutment pressure in front of the coal body.Moreover,it has a certain correlation with the change of axial load... The advance speed of the working face in coal mines can significantly affect the fluctuation frequency of abutment pressure in front of the coal body.Moreover,it has a certain correlation with the change of axial loading rate in coal and rock mechanics test.Therefore,uniaxial compression tests under various loading rates of 0.05,0.1,0.15,0.25,0.5 MPa/s were conducted using 2000 kN triaxial testing machine and PCI-2 acoustic emission test system to study the loading rate effect on the mechanical properties of deep sandstones.The results show that 1)the peak strength and elastic modulus of the deep sandstone increase with the loading rate increasing;2)with the loading rate increasing,the deep sandstone transforms from plastic-elastic-plastic to plastic-elastic and moreover,the failure mode gradually transfers from type I to type III;3)With the loading rate increasing,the total input strain energy,elastic strain energy,and dissipated strain energy generally increase;4)the damage variable presents the evolution characteristics of inverted“S”shape with time,and with the loading rate increasing,the damage degree of the deep sandstone is aggravated.The conclusion obtained can provide the theoretical basis for the stability control of the surrounding rock in deep engineering. 展开更多
关键词 loading rate effect failure mode energy evolution damage evolution mechanical properties deep sandstone
在线阅读 下载PDF
Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism 被引量:4
4
作者 Peng Wang Zhijun Zheng +1 位作者 Shenfei Liao Jilin Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第1期117-129,共13页
The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct ... The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored.The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings. 展开更多
关键词 Cellular material Constant-velocity compression Direct impact Cross-sectional stress Initial crush stress Strain rate effect
在线阅读 下载PDF
Numerical Derivation of Strain Rate Effects on Material Properties of Masonry with Solid Clay Bricks 被引量:4
5
作者 WEI Xueying HAO Hong 《Transactions of Tianjin University》 EI CAS 2006年第B09期147-151,共5页
In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume... In this paper, numerical method is used als. A typical unit of masonry is selected to serve merical model of RVE is established with detailed to study the strain rate effect on masonry materias a representative volume element (RVE). Nudistinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests. The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials. Dynamic loads of different loading rates are applied to RVE. The equivalent homogenized uniaxial compressive strength, threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE. The strain rate effect on the masonry material with clay brick and mortar, such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results. 展开更多
关键词 masonry structure strain rate effects dynamic increase factor (DIF) elastic modulus ultimate strength
在线阅读 下载PDF
Dose rate effects on shape memory epoxy resin during 1 Me V electron irradiation in air 被引量:1
6
作者 Longyan Hou Yiyong Wu +2 位作者 Debin Shan Bin Guo Yingying Zong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第8期61-69,共9页
The effects of 1 Me V electron irradiation in air at a fixed accumulated dose and dose rates of 393.8,196.9,78.8,and 39.4 Gy s^(-1)on a shape memory epoxy(SMEP)resin were studied.Under low-dose-rate irradiation,accele... The effects of 1 Me V electron irradiation in air at a fixed accumulated dose and dose rates of 393.8,196.9,78.8,and 39.4 Gy s^(-1)on a shape memory epoxy(SMEP)resin were studied.Under low-dose-rate irradiation,accelerated degradation of the shape memory performance was observed;specifically,the shape recovery ratio decreased exponentially with increasing irradiation time(that is,with decreasing dose rate).In addition,the glass transition temperature of the SMEP,as measured by dynamic mechanical analysis,decreased overall with decreasing dose rate.The dose rate effects of 1 Me V electron irradiation on the SMEP were confirmed by structural analysis using electron paramagnetic resonance(EPR)spectroscopy and Fourier transform infrared(FTIR)spectroscopy.The EPR spectra showed that the concentration of free radicals increased exponentially with increasing irradiation time.Moreover,the FTIR spectra showed higher intensities of the peaks at 1660 and 1720 cm^(-1),which are attributed to stretching vibrations of amide C=O and ketone/acid C=O,at lower dose rates.The intensities of the IR peaks at 1660 and 1720 cm^(-1) increased exponentially with increasing irradiation time,and the relative intensity of the IR peak at 2926 cm^(-1)decreased exponentially with increasing irradiation time.The solid-state13 C nuclear magnetic resonance(NMR)spectra of the SMEP before and after 1 Me V electron irradiation at a dose of 1970 k Gy and a dose rate of 78.8 Gy s^(-1) indicated damage to the CH_(2)–N groups and aliphatic isopropanol segment.This result is consistent with the detection of nitrogenous free radicals,a phenoxy-type free radical,and several types of pyrolytic carbon radicals by EPR.During the subsequent propagation process,the free radicals produced at lower dose rates were more likely to react with oxygen,which was present at higher concentrations,and form the more destructive peroxy free radicals and oxidation products such as acids,amides,and ketones.The increase in peroxy free radicals at lower dose rates was thought to accelerate the degradation of the macroscopic performance of the SMEP. 展开更多
关键词 Shape memory epoxy resin Shape memory effect Electron irradiation Dose rate effect Free radical Chain scission
原文传递
Modeling Strain Rate Effect for Heterogeneous Brittle Materials 被引量:1
7
作者 MA Guowei DONG Aiai LI Jianchun 《Transactions of Tianjin University》 EI CAS 2006年第B09期79-82,共4页
Rocks are heterogeneous from the point of dynamic failure behavior. Both the compressive and microstructure which is of significance to their tensile strength of rock-like materials is regarded different from the stat... Rocks are heterogeneous from the point of dynamic failure behavior. Both the compressive and microstructure which is of significance to their tensile strength of rock-like materials is regarded different from the static strength. The present study adopts smoothed particle hydrodynamics (SPH) which is a virtual particle based meshfree method to investigate strain rate effect for heterogeneous brittle materials. The SPH method is capable of simulating rock fracture, free of the mesh constraint of the traditional FEM and FDM models. A pressure dependent J-H constitutive model involving heterogeneity is employed in the numerical modeling. The results show the compressive strength increases with the increase of strain rate as well as the tensile strength, which is important to the engineering design. 展开更多
关键词 HETEROGENEOUS strain rate effect SPH method
在线阅读 下载PDF
Laser-assisted Simulation of Dose Rate Effects of Wide Band Gap Semiconductor Devices
8
作者 TANG Ge XIAO Yao +3 位作者 SUN Peng LIU Jingrui ZHANG Fuwang LI Mo 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第12期2314-2325,共12页
Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety... Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety,convenience,and precision.In recent years,wide band gap materials,known for their strong bonding and high ionization energy,have gained increasing attention from researchers and hold significant promise for extensive applications in specialized environments.Consequently,there is a growing need for comprehensive research on the dose rate effects of wide band gap materials.In response to this need,the use of laser-assisted simulation technology has emerged as a promising approach,offering an effective means to assess the efficacy of investigating these materials and devices.This paper focused on investigating the feasibility of laser-assisted simulation to study the dose rate effects of wide band gap semiconductor devices.Theoretical conversion factors for laser-assisted simulation of dose rate effects of GaN-based and SiC-based devices were been provided.Moreover,to validate the accuracy of the conversion factors,pulsed laser and dose rate experiments were conducted on GaN-based and SiC-based PIN diodes.The results demonstrate that pulsed laser radiation andγ-ray radiation can produce highly similar photocurrent responses in GaN-based and SiC-based PIN diodes,with correlation coefficients of 0.98 and 0.974,respectively.This finding reaffirms the effectiveness of laser-assisted simulation technology,making it a valuable complement in studying the dose rate effects of wide band gap semiconductor devices. 展开更多
关键词 laser-assisted simulation dose rate effect wide band gap semiconductor conversion factor
在线阅读 下载PDF
Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
9
作者 Meng-Jia Su Qiong Deng +3 位作者 Lan-Ting Liu Lian-Yang Chen Meng-Long Su Min-Rong An 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期400-411,共12页
Novel properties and applications of multilayered nanowires(MNWs)urge researchers to understand their mechanical behaviors comprehensively.Using the molecular dynamic simulation,tensile behaviors of Ti/Ni MNWs are inv... Novel properties and applications of multilayered nanowires(MNWs)urge researchers to understand their mechanical behaviors comprehensively.Using the molecular dynamic simulation,tensile behaviors of Ti/Ni MNWs are investigated under a series of layer thickness values(1.31,2.34,and 7.17 nm)and strain rates(1.0×10^(8)s^(-1)≤ε≤5.0×10^(10)s^(-1)).The results demonstrate that deformation mechanisms of isopachous Ti/Ni MNWs are determined by the layer thickness and strain rate.Four distinct strain rate regions in the tensile process can be discovered,which are small,intermediate,critical,and large strain rate regions.As the strain rate increases,the initial plastic behaviors transform from interface shear(the shortest sample)and grain reorientation(the longest sample)in small strain rate region to amorphization of crystalline structures(all samples)in large strain rate region.Microstructure evolutions reveal that the disparate tensile behaviors are ascribed to the atomic fractions of different structures in small strain rate region,and only related to collapse of crystalline atoms in high strain rate region.A layer thickness-strain rate-dependent mechanism diagram is given to illustrate the couple effect on the plastic deformation mechanisms of the isopachous nanowires.The results also indicate that the modulation ratio significantly affects the tensile properties of unequal Ti/Ni MNWs,but barely affect the plastic deformation mechanisms of the materials.The observations from this work will promote theoretical researches and practical applications of Ti/Ni MNWs. 展开更多
关键词 molecular dynamics Ti/Ni multilayered nanowires coupled layer thickness-strain rate effect plastic deformation mechanisms
原文传递
Dose-rate effects of low-dropout voltage regulator at various biases
10
作者 Wang Yiyuan Lu Wu +4 位作者 Ren Diyuan Zheng Yuzhan Gao Bo Chen Rui Fei Wuxiong 《Nuclear Science and Techniques》 SCIE CAS CSCD 2010年第6期352-356,共5页
A low-dropout voltage regulator,LM2941,was irradiated by ^(60)Coγ-rays at various dose rates and biases for investigating the total dose and dose rate effects.The radiation responses show that the key electrical para... A low-dropout voltage regulator,LM2941,was irradiated by ^(60)Coγ-rays at various dose rates and biases for investigating the total dose and dose rate effects.The radiation responses show that the key electrical parameters, including its output and dropout voltage,and the maximum output current,are sensitive to total dose and dose rates, and are significantly degraded at low dose rate and zero bias.The integrated circuits damage change with the dose rates and biases,and the dose-rate effects are relative to its electric field. 展开更多
关键词 剂量率效应 低压降稳压器 偏见 低压差稳压器 输入输出 电气参数 输出电流 低剂量率
在线阅读 下载PDF
Cooling rate effects on the structure and transformation behavior of Cu-Zn-Al shape memory alloys
11
作者 Nicoleta-Monica Lohan Marius-Gabriel Suru +1 位作者 Bogdan Pricop Leandru-Gheorghe Bujoreanu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第11期1109-1114,共6页
Different fragments of a hot-rolled and homogenized Cu–Zn–Al shape memory alloy(SMA) were subjected to thermal cycling by means of a differential scanning calorimetric(DSC) device. During thermal cycling, heatin... Different fragments of a hot-rolled and homogenized Cu–Zn–Al shape memory alloy(SMA) were subjected to thermal cycling by means of a differential scanning calorimetric(DSC) device. During thermal cycling, heating was performed at the same constant rate of increasing temperature while cooling was carried out at different rates of decreasing temperature. For each cooling rate, the temperature decreased in the same thermal interval. During each cooling stage, an exothermic peak(maximum) was observed on the DSC thermogram. This peak was associated with forward martensitic transformation. The DSC thermograms were analyzed with PROTEUS software: the critical martensitic transformation start(Ms) and finish(Mf) temperatures were determined by means of integral and tangent methods, and the dissipated heat was evaluated by the area between the corresponding maximum plot and a sigmoid baseline. The effects of the increase in cooling rate, assessed from a calorimetric viewpoint, consisted in the augmentation of the exothermic peak and the delay of direct martensitic transformation. The latter had the tendency to move to lower critical transformation temperatures. The martensite plates changed in morphology by becoming more oriented and by an augmenting in surface relief, which corresponded with the increase in cooling rate as observed by scanning electron microscopy(SEM) and atomic force microscopy(AFM). 展开更多
关键词 copper alloys shape memory effect microstructure phase transformations martensite cooling rate differential scanning calo-rimetry
在线阅读 下载PDF
Coupling effect of strain rate and temperature on deformation mechanism of reduced activation ferritic/martensitic steel
12
作者 Pu Li Tian-hao Guan +3 位作者 Yi-hang Li Ning Dang Feng Zhao Tao Suo 《Journal of Iron and Steel Research International》 2025年第9期2864-2878,共15页
The tensile properties and deformation mechanisms of the reduced activation ferritic/martensitic steel—China low activation martensitic(CLAM)steel are determined from tests carried out over a wider range of strain ra... The tensile properties and deformation mechanisms of the reduced activation ferritic/martensitic steel—China low activation martensitic(CLAM)steel are determined from tests carried out over a wider range of strain rate and temperature.During high-temperature deformation,the plastic deformation modes involve dynamic recrystallization(DRX)and dynamic recovery(DRV)processes,which govern the mechanical behaviors of CLAM steel under different loading conditions.This work systematically explored the effects of increasing strain rates and temperatures,finding that the microstructure evolution process is facilitated by nano-sized M_(23)C_(6)precipitates and the grain boundaries of the initial microstructure.Under quasi-static loading conditions,DRX grains preferentially nucleate around M_(23)C_(6) precipitates,and the dominant deformation mechanism is DRX.However,under dynamic loading conditions,the number of DRX grains decreases significantly,and the dominant deformation mechanism converts to DRV.It was concluded that the coupling effects of strain rates and temperatures strongly influence DRX and DRV processes,which ultimately determine the mechanical properties and microstructure evolution.Moreover,dynamic deformation at elevated temperatures achieves much finer grain sizes,offering a novel method for grain refinement through dynamic straining processes. 展开更多
关键词 Reduced activation ferritic/martensitic steel Dynamic deformation mechanism Strain rate effect Dynamic recrystallization Dynamic recovery
原文传递
Multi-scale impact resistance of flexible microporous metal rubber:Dynamic energy dissipation mechanism based on dynamic friction locking effect
13
作者 Qiang Song Liangliang Shen +3 位作者 Linwei Shi Ling Pan Ang Wang Zhiying Ren 《Defence Technology(防务技术)》 2025年第9期97-111,共15页
Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static ... Flexible microporous metal rubber(FMP-MR)is widely used in national defense applications,yet its mechanical behavior under high-speed impact conditions remains insufficiently explored.In this study,dynamic and static experiments were conducted to systematically investigate the mechanical response of metal-wrapped microporous materials under impact loading that spanned 10~6 orders of magnitude.By combining a high-precision numerical model with a spatial contact point search algorithm,the spatio–temporal contact characteristics of the complex network structure in FMP-MR were systematically analyzed.Furthermore,the mapping mechanism from turn topology and mesoscopic friction behavior to macroscopic mechanical properties was comprehensively explored.The results showed that compared with quasi-static loading,FMP-MR under high-speed impact exhibited higher energy absorption efficiency due to high-strain-rate inertia effect.Therefore,the peak stress increased by 141%,and the maximum energy dissipation increased by 300%.Consequently,the theory of dynamic friction locking effect was innovatively proposed.The theory explains that the close synergistic effect of sliding friction and plastic dissipation promoted by the stable interturn-locked embedded structure is the essential reason for the excellent dynamic mechanical properties of FMP-MR under dynamic loading conditions.Briefly,based on the in-depth investigation of the mechanical response and energy dissipation mechanism of FMP-MR under impact loads,this study provides a solid theoretical basis for further expanding the application range of FMP-MR and optimizing its performance. 展开更多
关键词 Flexible microporous metal rubber Strain rate effect Energy dissipation Dynamic mechanical properties
在线阅读 下载PDF
Effect of Health Management in Raising Awareness Rate of Disease Prevention and Treatment in Patients with Prehypertension
14
作者 Jing Huang 《Journal of Biosciences and Medicines》 2024年第2期236-243,共8页
Objective: To analyze the effect of health management on improving the awareness rate of disease prevention and treatment in patients with prehypertension, so as to provide guidance for clinical management of patients... Objective: To analyze the effect of health management on improving the awareness rate of disease prevention and treatment in patients with prehypertension, so as to provide guidance for clinical management of patients with prehypertension. Methods: 108 patients diagnosed with prehypertension in our hospital were divided into a control group and an experimental group. The control group was not given management measures, while the experimental group was given health management. The incidence of hypertension and cognition level of hypertension knowledge were compared between the two groups after management. Results: The incidence of hypertension in the experimental group was 7.41% lower than that in the control group 29.63%. The cognitive level of hypertension in the patients (66.54 ± 1.25) was significantly higher than that in the patients without health management (41.45 ± 2.45), and P < 0.05;Conclusion: For patients with prehypertension, the implementation of health management is helpful to improve their cognition of hypertension, master related prevention knowledge, and reduce the incidence of hypertension. 展开更多
关键词 effect of Health Management in Raising Awareness rate of Disease Prevention and Treatment in Patients with Prehypertension
暂未订购
Seismic performance evaluation of large-span offshore cable-stayed bridges under non-uniform earthquake excitations including strain rate effect 被引量:5
15
作者 LI Chao LI HongNan +3 位作者 ZHANG Hao SU JunSheng LI RouHan DING YiMing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第7期1177-1187,共11页
This paper presents a novel and precise seismic performance evaluation method for large-span offshore cable-stayed(LSOCS)bridge by considering the strain rate effect of RC materials and the spatial variation effect of... This paper presents a novel and precise seismic performance evaluation method for large-span offshore cable-stayed(LSOCS)bridge by considering the strain rate effect of RC materials and the spatial variation effect of seafloor seismic motions. Threedimensional finite element(FE) model of a LSOCS bridge located in the southeast coast of China is constructed in the ABAQUS platform. The non-uniform ground motions at the offshore site beneath the bridge are stochastically simulated and used as seismic inputs. Moreover, a subroutine for considering the rate-dependent properties of RC materials in a fiber-based beamcolumn element model is developed to account for the strain rate effect of RC materials in the nonlinear time-history analysis.The numerical results indicate that seismic responses and fragilities of the LSOCS bridge are both considerably affected by the non-uniform seafloor seismic motions and strain rate effect. The seismic performance evaluation approach presented in this paper can provide vital support for earthquake resistant design of LSOCS bridges. 展开更多
关键词 large-span offshore cable-stayed bridges spatially varying seafloor seismic motions strain rate effect seismic fragility
原文传递
Effects of Temperature and Strain Rate on Dynamic Properties of Concrete 被引量:2
16
作者 贾彬 陶俊林 +2 位作者 李正良 王汝恒 张誉 《Transactions of Tianjin University》 EI CAS 2008年第B10期511-513,共3页
To study the dynamic properties of the concrete subjected to impulsive loading, stress-time curves of concrete in different velocities were measured using split Hopkinson pressure bar (SHPB).Effects of temperature and... To study the dynamic properties of the concrete subjected to impulsive loading, stress-time curves of concrete in different velocities were measured using split Hopkinson pressure bar (SHPB).Effects of temperature and strain rate on the dynamic yield strength and constitutive relation of the con-crete were analyzed. The dynamic mechanical properties of the reinforced concrete are subjected to high strain rates when it is at a relatively low temperature. But with temperature increasing, the temperature softening effect makes the strength of the concrete weaken and the impact toughness of the concrete is saliently relative to strain rate effect. So, strain rate effect, strain hardening and temperature softening work together on the dynamic mechanical capability of concrete and the relation between them is relatively complex. 展开更多
关键词 CONCRETE temperature effect strain rate effect SHPB
在线阅读 下载PDF
Effect of Penetration Rates on the Piezocone Penetration Test in the Yellow River Delta Silt 被引量:1
17
作者 ZHANG Jiarui MENG Qingsheng +4 位作者 ZHANG Yan FENG Xiuli WEI Guanli SU Xiuting LIU Tao 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第2期361-374,共14页
Partial drainage often occurs during piezocone penetration testing on Yellow River Delta silt because of its intermediate physical and mechanical properties between those of sand and clay.Yet,there is no accurate unde... Partial drainage often occurs during piezocone penetration testing on Yellow River Delta silt because of its intermediate physical and mechanical properties between those of sand and clay.Yet,there is no accurate understanding for the range of penetra-tion rates to trigger the partial drainage of silt soils.In order to fully investigate cone penetration rate effects under partial drainage condi-tions,indoor 1 g penetration model tests and numerical simulations of cavity expansion at variable penetration rates were carried out on the Yellow River Delta silt.The boundary effect of the model tests and the variation of key parameters at the different cavity ex-pansion rates were analyzed.The 1 g penetration model test results and numerical simulations results consistently indicated that the penetration rate to trigger the partially drainage of typical silt varied at least three orders of magnitude.The numerical simulations also provide the reference values for the penetration resistance corresponding to zero dilation and zero viscosity at any given normalized penetration rate for silt in Yellow River Delta.These geotechnical properties can be used for the design of offshore platforms in Yel-low River Delta,and the understanding of cone penetration rate effects under the partially drained conditions would provide some technical support for geohazard evaluation of offshore platforms. 展开更多
关键词 Yellow River Delta silt cone penetration rate effects 1g model simulation numerical analysis
在线阅读 下载PDF
Study of the dose rate effect of 180 nm nMOSFETs
18
作者 何宝平 姚志斌 +4 位作者 盛江坤 王祖军 黄绍燕 刘敏波 肖志刚 《Chinese Physics C》 SCIE CAS CSCD 2015年第1期65-69,共5页
Radiation induced offstate leakage in the shallow trench isolation regions of SIMC 0.18 μm nMOSFETs is studied as a function of dose rate. A "true" dose rate effect (TDRE) is observed. Increased damage is observe... Radiation induced offstate leakage in the shallow trench isolation regions of SIMC 0.18 μm nMOSFETs is studied as a function of dose rate. A "true" dose rate effect (TDRE) is observed. Increased damage is observed at low dose rate (LDR) than at high dose rate (HDR) when annealing is taken into account. A new method of simulating radiation induced degradation in shallow trench isolation (STI) is presented. A comparison of radiation induced offstate leakage current in test nMOSFETs between total dose irradiation experiments and simulation results exhibits excellent agreement. The investigation results imply that the enhancement of the leakage current may be worse for the dose rate encountered in the environment of space. 展开更多
关键词 dose rate effect MOSFET ELDRS total dose
原文传递
Particle breakage of calcareous sand from low-high strain rates
19
作者 Yaru Lv Jieming Hu +2 位作者 Dongdong Zhang Yuan Wang Yuchen Su 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第12期5249-5263,共15页
The influence of strain rate on the mechanics of particles is well documented.However,a comprehensive understanding of the strain rate effect on calcareous particles,particularly in the transition from static to dynam... The influence of strain rate on the mechanics of particles is well documented.However,a comprehensive understanding of the strain rate effect on calcareous particles,particularly in the transition from static to dynamic loading,is still lacking in current literature.This study conducted 720 quasi-static and impact tests on irregular calcareous particles to investigate the macroscopic strain rate effect,and performed numerical simulations on spherical particles to explore the underlying microscopic mechanisms.The strain rate effect on the characteristic particle strength was found to exhibit three regimes:in Regime 1,the particle strength gradually improves when the strain rate is lower than approximately 10^(2)s^(-1);in Regime 2,the particle strength sharply enhances when the strain rate increases from 10^(2)s^(-1)to 10^(4)s^(-1);and in Regime 3,the particle strength remains almost constant when the strain rate is higher than 10^(4)s^(-1).The three-regime strain rate effect is an inherent property of the material and independent of particle shape.The asynchrony between loading and deformation plays a dominant role in these behaviors,leading to a thermoactivation-dominated effect in Regime 1,a macroscopic viscosity-dominated effect in Regime 2,and a combined thermoactivation and macroscopic viscosity-dominated effect in Regime 3.These mechanisms induce a transition in the failure mode from splitting to exploding and then smashing,which increases the energy required to rupture a single bond and,consequently,enhances the particle strength. 展开更多
关键词 Calcareous particle Strain rate effect Laboratory tests Particle breakage Failure mode
在线阅读 下载PDF
Model Building of the Initial Crown Effect Rate in 4-High Mill 被引量:2
20
作者 Jianzhong XU, Dianyao GONG, Wencai ZHANG, Xianwen CHANG, Xianghua LIU and Guodong WANG State Key Laboratory of Rolling Technology and Automation, Northeastern University, PO. Box 105, Shenyang 110004, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第2期165-169,共5页
The code for calculating the crown effect rate of hot strip steel Was developed using the effect function method. The effect of the initial crown on the crown of the product in hot strip rolling was investigated. The ... The code for calculating the crown effect rate of hot strip steel Was developed using the effect function method. The effect of the initial crown on the crown of the product in hot strip rolling was investigated. The coefficients of a polynomial of degree six for calculating the base value of initial crown effect rate in 4-high mill were determined and the compensation factors of per unit width rolling force, bending force, work roll crown and draft on the initial crown effect rate were given. The difference between the calculation result by established model and theoretical value obtained by effect function method was 4.88 μm when the strip width was 1.85 m. 展开更多
关键词 4-high mill effect function Hot rolling strip effect rate
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部