The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This...The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.展开更多
The ab initio calculations of electron-impact resonant excitation rate coefficients from the ground level to 54 fine-structure levels of 3d94l (1 = s, p, d, f) configurations of Ni-like tantalum ion are performed by...The ab initio calculations of electron-impact resonant excitation rate coefficients from the ground level to 54 fine-structure levels of 3d94l (1 = s, p, d, f) configurations of Ni-like tantalum ion are performed by using a fully relativistic distorted-wave approximation. The configuration-interaction effects are taken into account. The decays to autoionizing levels possibly followed by autoionization cascades are also included in the calculation. The contributions from doubly-excited intermediate states of Cu-like 31^17n′l′n′l″ (n′ = 4, 5; n″ = 5 - 15) are calculated explicitly, and the contributions from high Rydberg states (n″〉 15) are taken into account by using n-3 scaling law. The present results should be more accurate than the existent calculations.展开更多
This paper calculates the electron impact excitation rate coefficients from the ground term 2s^22p^2 3p to the excited terms of the 2s^22p^2, 2s^2p^3, 2s^22p3s, 2s^22p3p, and 2s^22p3d configurations of N II. In the ca...This paper calculates the electron impact excitation rate coefficients from the ground term 2s^22p^2 3p to the excited terms of the 2s^22p^2, 2s^2p^3, 2s^22p3s, 2s^22p3p, and 2s^22p3d configurations of N II. In the calculations, multiconfiguration Dirac-Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.展开更多
The prototype tetra-atomic reaction F+H2O→HF+OH plays a significant role in both atmospheric and astronomical chemistry.In this work,thermal rate coefficients of this reaction are determined with the ring polymer mol...The prototype tetra-atomic reaction F+H2O→HF+OH plays a significant role in both atmospheric and astronomical chemistry.In this work,thermal rate coefficients of this reaction are determined with the ring polymer molecular dynamics(RPMD)method on a full-dimensional potential energy surface(PES).This PES is the most accurate one for the title reaction,as demonstrated by the correct barrier height and reaction energy,compared to the benchmark calculations by the focal point analysis and the high accuracy extrapolated ab initio thermochemistry methods.The RPMD rate coefficients are in excellent agreement with those calculated by the semiclassical transition state theory and a two-dimensional master equation technique,and some experimental measurements.As has been found in many RPMD applications,quantum effects,including tunneling and zero-point energy effects,can be efficiently and effectively captured by the RPMD method.In addition,the convergence of the results with respect to the number of beads is rapid,which is also consistent with previous RPMD applications.展开更多
A method based upon the weighted total cross section (WTCS) theory is proposed to calculate the photo-ionisation cross sections and the radiative recombination rate coefficients between the fundamental level of CO a...A method based upon the weighted total cross section (WTCS) theory is proposed to calculate the photo-ionisation cross sections and the radiative recombination rate coefficients between the fundamental level of CO and the main electronic states of its corresponding ion. Total photo-ionisation cross sections and radiative recombination rate coefficients are determined from the calculation of elementary vibrational photo-ionisation cross sections. Transitions be- tween CO+(X, A and B) and CO(X) are considered. Total photo-ionisation cross sections and recombination coefficients are computed in the temperature interval 500-15000 K.展开更多
Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity ...Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity distribution functions. They are usuMly assumed to be dual Maxwellian distribution functions with the same temperature for thermal nuclear fusion circumstances. However, if high power neutral beam injection and minority ion species ICRF plasma heating, or multi-pinched plasma beam head-on collision, in a converging region are required and investigated in future large scale fusion reactors, then the fractions of the injected energetic fast ion tail resulting from ionization or charge exchange will be large enough and their contribution to the non-Maxwellian distribution functions is not negligible, hence to the fusion reaction rate coefficient or calculation of fusion power. In such cases, beam-target, and beam-beam reaction enhancement effect contributions should play very important roles. In this paper, several useful formulae to calculate the fusion reaction rate coefticient for different beam and target combination scenarios are derived in detail展开更多
Background Previous studies have suggested that nomogram can simplize complicated calculations of several varibles. A simple nomogram was constructed to estimate absorption rate coefficient (k a) by using the peak t...Background Previous studies have suggested that nomogram can simplize complicated calculations of several varibles. A simple nomogram was constructed to estimate absorption rate coefficient (k a) by using the peak time (t peak ) and the elimination rate coefficient (k e) of drugs administered orally Methods The nomogram was based on the plasma concentration-time (C-T) curve equation and the function relation between t peak , k a and k e A mathematical analysis was presented for the construction of single chart nomogram To check the degree of accuracy of the developed nomogram, we used it to analyze retrospective profiles of 46 drugs and compared the k a values obtained graphically and those calculated by numerically solving the descriptive equation In addition, we measured the carbocisteine concentration of 18 healthy volunteers by HPLC with fluorescence detection To analyze performance error, the measured carbocisteine concentrations were compared with predicted concentrations by the k a obtained from the nomograms along with the other pharmacokinetic parameters Results The estimated of k a values from nomograms were in very close proximity with the numerical values The performance error was as follows: median performance error (MDPE) and median absolute performance error (MDAPE) were 1 32% and 18 15%, respectively Conclusions The developed nomogram is accurate and reliable The size of performance error meets the demand of clinical pharmacokinetics Therefore, the nomograms can offer another convenient and easy method for rational individualized dosage regimens展开更多
The Rb(5Dj)+H2→RbH+H photochemical reaction has been studied. Rb vapor mixed with H2 is irradiated in a glass cell with 778-nm pulses which populate one of the 52D states by two-photon absorption. Measurements fo...The Rb(5Dj)+H2→RbH+H photochemical reaction has been studied. Rb vapor mixed with H2 is irradiated in a glass cell with 778-nm pulses which populate one of the 52D states by two-photon absorption. Measurements for the relative intensities of the atomic fluorescence and the absorption of the RbH product near the axis of the cell yield the rate coefficients for the Rb(5D3/2)+H2 and Rb(5D5/2)+H2 reactions, which are (3.6±1.3) ×10^-11 and (1.7±0.6)×10^-11 cm^3/s, respectively. The relative reactivity with H2 for Rb(5D3/2) is higher than that for Rb(5D5/2).展开更多
Collision-induced re-laxation process of CH(X^(2)Π,v=0)radical in various bath gases He,Ar,and N_(2)has been investigated ex-perimentally under low-temperature(26-52 K)supersonic flow conditions.The CH radicals were ...Collision-induced re-laxation process of CH(X^(2)Π,v=0)radical in various bath gases He,Ar,and N_(2)has been investigated ex-perimentally under low-temperature(26-52 K)supersonic flow conditions.The CH radicals were generat-ed with internal excitation by multiphoton photolysis of CHBr_(3)at 248 nm,and its rotational temperature was found to relax to the flow temperature in a few microseconds by colliding with bath gas.The relaxation rate coefficients for CH(X^(2)Π,v=0)radical in He,Ar,and N_(2)flow were obtained by time-resolved laser-induced fluorescence measurements,ranging from 10^(-12)cm^(3)·molecule^(-1)·s^(-1)to 10^(-11)cm^(3)·molecule^(-1)·s^(-1).The N_(2)flow exhibits the highest relax-ation rate for CH(X^(2)Π)radical due to its additional rovibrational levels,which allow for more efficient energy dissipation during collisions compared to monoatomic gases.The Ar flow shows a larger relaxation rate than He flow due to its greater polarizability and stronger long-range interaction with the CH(X^(2)Π)radical.展开更多
Rate coefficients for the reaction of N03 radicals with 6 unsaturated volatile organic compounds(VOCs) in a 7300 L simulation chamber at ambient temperature and pressure have been determined by the relative rate metho...Rate coefficients for the reaction of N03 radicals with 6 unsaturated volatile organic compounds(VOCs) in a 7300 L simulation chamber at ambient temperature and pressure have been determined by the relative rate method.The resulting rate coefficients were determined for isoprene,2-carene,3-carene,methyl vinyl ketone(MVK),methacrolein(MACR)and crotonaldehyde(CA),as(6.6±0.8)×10-13,(1.8±0.6)×10-11,(8.7±0.5)×10-12,(1.24±1.04)×10-16,(3.3±0.9)×10-15 and(5.7±1.2)×10-15 cm3/(molecule·sec),respectively.The experiments indicate that NO3 radical reactions with all the studied unsaturated VOGs proceed through addition to the olefinic bond,however,it indicates that the introduction of a carbonyl group into unsaturated VOGs can deactivate the neighboring olefinic bond towards reaction with the NO3 radical,which is to be expected since the presence of these electronwithdrawing substituents will reduce the electron density in the π orbitals of the alkenes,and will therefore reduce the rate coefficient of these electrophilic addition reactions.In addition,we investigated the product formation from the reactions of 2-carene and 3-carene with the NO3 radical.Qualitative identification of an epoxide(C10H16OH+),caronaldehyde(C10H16O2 H+) and nitrooxy-ketone(C10H16O4 NH+) was achieved using a proton transfer reaction time-of-flight mass spectrometer(PTR-TOF-MS) and a reaction mechanism is proposed.展开更多
The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients and kinetic isotope effects of the heavy-light-heavy abstract reaction Cl+XCl→XCl+Cl(X=H,D,Mu).For the Cl+HCl reaction,the ...The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients and kinetic isotope effects of the heavy-light-heavy abstract reaction Cl+XCl→XCl+Cl(X=H,D,Mu).For the Cl+HCl reaction,the excellent agreement between the RPMD and experimental values provides a strong proof for the accuracy of the RPMD theory.And the RPMD results are also consistent with results from other theoretical methods including improved-canonical-variational-theory and quantum dynamics.The most novel finding is that there is a double peak in Cl+MuCl reaction near the transition state,leaving a free energy well.It comes from the mode softening of the reaction system at the peak of the potential energy surface.Such an explicit free energy well suggests strongly there is an observable resonance.And for the Cl+DCl reaction,the RPMD rate coefficient again gives very accurate results compared with experimental values.The only exception is at the temperature of 312.5 K,results from RPMD and all other theoretical methods are close to each other but slightly lower than the experimental value,which indicates experimental or potential energy surface deficiency.展开更多
The reactive collisions of nitrogen ion with hydrogen and its isotopic variations have great significance in the field of astrophysics.Herein,the state-to-state quantum time-dependent wave packet calculations of N^(+)...The reactive collisions of nitrogen ion with hydrogen and its isotopic variations have great significance in the field of astrophysics.Herein,the state-to-state quantum time-dependent wave packet calculations of N^(+)(3P)+HD→NH^(+)/ND^(+)+D/H reaction are carried out based on the recently developed potential energy surface[Phys.Chem.Chem.Phys.2122203(2019)].The integral cross sections(ICSs)and rate coefficients of both channels are precisely determined at the state-to-state level.The results of total ICSs and rate coefficients present a dramatic preference on the ND+product over the NH^(+)product,conforming to the long-lived complex-forming mechanism.Product state-resolved ICSs indicate that both the product molecules are difficult to excite to higher vibrational states,and the ND^(+)product has a hotter rotational state distribution.Moreover,the integral cross sections and rate coefficients are precisely determined at the state-to-state level and insights are provided about the differences between the two channels.The present results would provide an important reference for the further experimental studies at the finer level for this interstellar chemical reaction.The datasets presented in this paper,including the ICSs and rate coefficients of the two products for the title reaction,are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00034.展开更多
The fate of 2-nitrobenzaldehyde(2-NBA)is of interest in atmospheric chemistry as it is a semi-volatile organic compound with high photosensitivity.This study presents a quantum chemical study of the gas-phase reaction...The fate of 2-nitrobenzaldehyde(2-NBA)is of interest in atmospheric chemistry as it is a semi-volatile organic compound with high photosensitivity.This study presents a quantum chemical study of the gas-phase reactions of 2-NBA photo-excitation and OH-oxidation in the absence and presence of small TiO_(2) clusters.To further understand the unknown photolysis mechanism,the photo-reaction pathways of ground singlet state and the lying excited triplet state of 2-NBA were investigated including the initial and subsequent reactions of proton transfer,direct CO,NO_(2),and HCO elimination routes in the presence of O_(2) and NO.Meanwhile,the OH-mediated degradation of 2-NBA proceeded via five H-extraction and six OH-addition channels by indirect mechanism,which follows a succession of reaction steps initiated by the formation of weakly stable intermediate complexes.The H-extraction from the-CHO group was the dominant pathway with a negative activation energy of-1.22 kcal/mol.The calculated rate coefficients at 200–600 K were close to the experimental data in literature within 308-352 K,and the kinetic negative temperature independence was found in both experimental literature and computational results.Interestingly,2-NBA was favored to be captured onto small TiO_(2) clusters via six adsorption configurations formed via various combination of three types of bonds of Ti…O,Ti…C,and O…H between the molecularly adsorbed 2-NBA and TiO_(2) clusters.Comparison indicted that the chemisorptions of aldehyde oxygen have largest energies.The results suggested adsorption conformations have a respectable impact on the catalysis barrier.This study is significant for understanding the atmospheric chemistry of 2-nitrobenzaldehyde.展开更多
More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation beha...More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation behavior of nano-silica particles with diameter 130–480 nm at different initial particle concentration, pH, ionic strength, and ionic valence of electrolytes. The modified Smoluchowski theory failed to describe the aggregation kinetics for nano-silica particles with diameters less than 190 nm. Besides, ionic strength, cation species and p H all affected fast aggregation rate coefficients of 130 nm nanoparticles. Through incorporating structural hydration force into the modified Smoluchowski theory, it is found that the reason for all the anomalous aggregation behavior was the different structural hydration layer thickness of nanoparticles with various sizes. The thickness decreased with increasing of particle size, and remained basically unchanged for particles larger than 190 nm. Only when the distance at primary minimum was twice the thickness of structural hydration layer, the structural hydration force dominated, leading to the higher stability of nanoparticles. This study clearly clarified the unique aggregation mechanism of nanoparticles with smaller size, which provided reference for predicting transport and fate of nanoparticles and could help facilitate the evaluation of their environment risks.展开更多
X-ray emission spectra for L-shell of Li-like aluminium ions are simulated by using the flexible atomic code based on the collisional radiative model. Atomic processes including radiative recombination, dielectronic r...X-ray emission spectra for L-shell of Li-like aluminium ions are simulated by using the flexible atomic code based on the collisional radiative model. Atomic processes including radiative recombination, dielectronic recombination, collisional ionization and resonance excitation from the neighbouring ion (Al^9+ and Al^11+ ) charge states of the target ion (Al^10+) are considered in the model. In addition, the contributions of different atomic processes to the x-ray spectrum are analysed. The results show that dielectronic recombination, radiative recombination, collisional ionization and resonance excitation, other than direct collisional excitation, are very important processes.展开更多
When radionuclides migrate in porous media with water serving as carrier, the mechanism of sorption and desorption is not negligible. nonequilibrium conditions exist in sorption and desorption. In this paper,a numeric...When radionuclides migrate in porous media with water serving as carrier, the mechanism of sorption and desorption is not negligible. nonequilibrium conditions exist in sorption and desorption. In this paper,a numerical model of radionuclide migration with nonequilibrium sorption was developed.The algorithm of numerical descretizing and direct substituting was adopted in coupling of the convective-dispersive equation and the nonequilibrium sorption isotherm in this model ,and this makes it easier to solve the model numerically.A quantitative analysis is made for the first time that the influence of nonequilibrium sorption, represented by the rate coefficient which shows how quickly the nonequilibrium condition in sorption and desorption reaches equilibrium on the migration of radionuclide,and results show that it affects the migration perceptibly. Finally the model was verified by using the observed data of radionuclide migration test conducted in the field, and which clarified its availability.展开更多
The KLn dielectronic recombination processes of trapped highly charged B-like through He-like Cu ions are studied theoretically, and the theoretical results are used to analyse our previous experimental data at Heidel...The KLn dielectronic recombination processes of trapped highly charged B-like through He-like Cu ions are studied theoretically, and the theoretical results are used to analyse our previous experimental data at Heidelberg electron beam ion trap (EBIT). The theoretical resonant positions agree with the experimental resonant positions to a precision of 0.4%, in comparison with the resonant positions of those highest peaks between theory and experiment. The experimental spectra are then fitted using a formula with the theoretical resonant energies and strengths, the result shows good overall agreement between theory and experiment over a wide electron energy range. The distribution of highly charged states is obtained from the fitting parameters.展开更多
Based on the multi-configuration Dirac-Fock method, theoretical calculations are carried out for the dielectronic recombination (DR) rate coefficients and the collision excitation rate coefficients of Sn^10+ ions. ...Based on the multi-configuration Dirac-Fock method, theoretical calculations are carried out for the dielectronic recombination (DR) rate coefficients and the collision excitation rate coefficients of Sn^10+ ions. It is found that the total DR rate coefficient has its maximum value between 10eV and 100eV and is greater than either the radiative recombination or three-body recombination rate coefficients (the number of free electrons per unit is 10^21 cm^3) for the ease of Te 〉 1 eV. Therefore, DR can strongly influence the ionization balance of laser produced multi-charged tin ions. The related dieleetronie satellite cannot be ignored at low temperature Te 〈 5 eV.展开更多
The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation...The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation and molecule collision theory to predict the dissociation reaction rate coefficients. Upon comparison with available literature, the model was confirmed to be acceptably accurate in general. Several reaction rate coefficients of the NO/SO2/N2/O2 dissociation system were derived according to the Arrhenius formula. The activation energies of each plasma reaction were calculated by quantum chemistry methods. The relation between the dissociation reaction rate coefficient and electron temperature was established to describe the importance of each reaction and to predict relevant processes of gaseous chemical reactions. The sensitivity of the mechanism of NO/SO2/N2/O2 dissociation reaction in a non-thermal plasma was also analysed.展开更多
A systematic study is carried out on the angular distribution and polarization of photons emitted following radiative-recombination of bare and He-like ions of Ne, At, Ni and Mo with a unidirectional electron beam. In...A systematic study is carried out on the angular distribution and polarization of photons emitted following radiative-recombination of bare and He-like ions of Ne, At, Ni and Mo with a unidirectional electron beam. In order to incorporate the screening effect due to inner-shell electrons, a distorted wave method is used. Scaling rules for polarization of the photon following radiative recombination to both bare and He-like ions are given for the incident energy regions up to six times the ionization threshold energy of the final state.展开更多
基金supported by the National Natural Science Foundation of China(No.21503130 and No.11674212,and No.21603144)supported by the Young Eastern Scholar Program of the Shanghai Municipal Education Commission(QD2016021)+1 种基金the Shanghai Key Laboratory of High Temperature Superconductors(No.14DZ2260700)supported by Shanghai Sailing Program(No.2016YF1408400).
文摘The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10574029 and No 10434050, the Chinese Association of Atomic and Molecular Data and National High-Tech ICF Committee in China.
文摘The ab initio calculations of electron-impact resonant excitation rate coefficients from the ground level to 54 fine-structure levels of 3d94l (1 = s, p, d, f) configurations of Ni-like tantalum ion are performed by using a fully relativistic distorted-wave approximation. The configuration-interaction effects are taken into account. The decays to autoionizing levels possibly followed by autoionization cascades are also included in the calculation. The contributions from doubly-excited intermediate states of Cu-like 31^17n′l′n′l″ (n′ = 4, 5; n″ = 5 - 15) are calculated explicitly, and the contributions from high Rydberg states (n″〉 15) are taken into account by using n-3 scaling law. The present results should be more accurate than the existent calculations.
基金supported by the National Natural Science Foundation of China (Grant Nos.10774122 and 10876028)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20070736001)the Technology and Innovation Program of Northwest Normal University (Grant No.NWNU-KJCXGC-03-21)
文摘This paper calculates the electron impact excitation rate coefficients from the ground term 2s^22p^2 3p to the excited terms of the 2s^22p^2, 2s^2p^3, 2s^22p3s, 2s^22p3p, and 2s^22p3d configurations of N II. In the calculations, multiconfiguration Dirac-Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.
基金supported by the National Natural Science Foundation of China(No.21573027)
文摘The prototype tetra-atomic reaction F+H2O→HF+OH plays a significant role in both atmospheric and astronomical chemistry.In this work,thermal rate coefficients of this reaction are determined with the ring polymer molecular dynamics(RPMD)method on a full-dimensional potential energy surface(PES).This PES is the most accurate one for the title reaction,as demonstrated by the correct barrier height and reaction energy,compared to the benchmark calculations by the focal point analysis and the high accuracy extrapolated ab initio thermochemistry methods.The RPMD rate coefficients are in excellent agreement with those calculated by the semiclassical transition state theory and a two-dimensional master equation technique,and some experimental measurements.As has been found in many RPMD applications,quantum effects,including tunneling and zero-point energy effects,can be efficiently and effectively captured by the RPMD method.In addition,the convergence of the results with respect to the number of beads is rapid,which is also consistent with previous RPMD applications.
基金the "Comite Mixté Franco-Tunisien pour la Coopération Universitaire(Partenariat Hubert Curien,Utique,Tunisie)"for its financial support in the achievement of this work
文摘A method based upon the weighted total cross section (WTCS) theory is proposed to calculate the photo-ionisation cross sections and the radiative recombination rate coefficients between the fundamental level of CO and the main electronic states of its corresponding ion. Total photo-ionisation cross sections and radiative recombination rate coefficients are determined from the calculation of elementary vibrational photo-ionisation cross sections. Transitions be- tween CO+(X, A and B) and CO(X) are considered. Total photo-ionisation cross sections and recombination coefficients are computed in the temperature interval 500-15000 K.
基金Supported by the International Thermonuclear Experimental Reactor Project of China under Grant No 2013GB114003the National Natural Science Foundation of China under Grant No 11275135
文摘Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity distribution functions. They are usuMly assumed to be dual Maxwellian distribution functions with the same temperature for thermal nuclear fusion circumstances. However, if high power neutral beam injection and minority ion species ICRF plasma heating, or multi-pinched plasma beam head-on collision, in a converging region are required and investigated in future large scale fusion reactors, then the fractions of the injected energetic fast ion tail resulting from ionization or charge exchange will be large enough and their contribution to the non-Maxwellian distribution functions is not negligible, hence to the fusion reaction rate coefficient or calculation of fusion power. In such cases, beam-target, and beam-beam reaction enhancement effect contributions should play very important roles. In this paper, several useful formulae to calculate the fusion reaction rate coefticient for different beam and target combination scenarios are derived in detail
文摘Background Previous studies have suggested that nomogram can simplize complicated calculations of several varibles. A simple nomogram was constructed to estimate absorption rate coefficient (k a) by using the peak time (t peak ) and the elimination rate coefficient (k e) of drugs administered orally Methods The nomogram was based on the plasma concentration-time (C-T) curve equation and the function relation between t peak , k a and k e A mathematical analysis was presented for the construction of single chart nomogram To check the degree of accuracy of the developed nomogram, we used it to analyze retrospective profiles of 46 drugs and compared the k a values obtained graphically and those calculated by numerically solving the descriptive equation In addition, we measured the carbocisteine concentration of 18 healthy volunteers by HPLC with fluorescence detection To analyze performance error, the measured carbocisteine concentrations were compared with predicted concentrations by the k a obtained from the nomograms along with the other pharmacokinetic parameters Results The estimated of k a values from nomograms were in very close proximity with the numerical values The performance error was as follows: median performance error (MDPE) and median absolute performance error (MDAPE) were 1 32% and 18 15%, respectively Conclusions The developed nomogram is accurate and reliable The size of performance error meets the demand of clinical pharmacokinetics Therefore, the nomograms can offer another convenient and easy method for rational individualized dosage regimens
基金supported by the National Natural Science Foundation of China under Grant No.10664003
文摘The Rb(5Dj)+H2→RbH+H photochemical reaction has been studied. Rb vapor mixed with H2 is irradiated in a glass cell with 778-nm pulses which populate one of the 52D states by two-photon absorption. Measurements for the relative intensities of the atomic fluorescence and the absorption of the RbH product near the axis of the cell yield the rate coefficients for the Rb(5D3/2)+H2 and Rb(5D5/2)+H2 reactions, which are (3.6±1.3) ×10^-11 and (1.7±0.6)×10^-11 cm^3/s, respectively. The relative reactivity with H2 for Rb(5D3/2) is higher than that for Rb(5D5/2).
基金supported by the National Natural Science Foundation of China(No.22273103)the National Natural Science Foundation of China(NSFC Center for Chemical Dynamics)(No.22288201)+1 种基金Dalian Institute of Chemical Physics(DICP I202230)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(grant GJJSTD20220001)。
文摘Collision-induced re-laxation process of CH(X^(2)Π,v=0)radical in various bath gases He,Ar,and N_(2)has been investigated ex-perimentally under low-temperature(26-52 K)supersonic flow conditions.The CH radicals were generat-ed with internal excitation by multiphoton photolysis of CHBr_(3)at 248 nm,and its rotational temperature was found to relax to the flow temperature in a few microseconds by colliding with bath gas.The relaxation rate coefficients for CH(X^(2)Π,v=0)radical in He,Ar,and N_(2)flow were obtained by time-resolved laser-induced fluorescence measurements,ranging from 10^(-12)cm^(3)·molecule^(-1)·s^(-1)to 10^(-11)cm^(3)·molecule^(-1)·s^(-1).The N_(2)flow exhibits the highest relax-ation rate for CH(X^(2)Π)radical due to its additional rovibrational levels,which allow for more efficient energy dissipation during collisions compared to monoatomic gases.The Ar flow shows a larger relaxation rate than He flow due to its greater polarizability and stronger long-range interaction with the CH(X^(2)Π)radical.
基金supported by Labex Voltaire(No.ANR-10-LABX100-01)the French National Research Agency(Agence Nationale de la Recherche)and the Research Grants Council(ANR-RGC)program(project ANR-16-CE01-0013)+2 种基金ARD PIVOTS program(Ambition Recherche Développement Plateformes d’Innovation,de Valorisation,d’Optimisation,Technologiques environnmentale S,supported by the centre-Val de Loire regional council)funding from the European Union’s Horizon 2020 research and innovation program through the EUROCHAMP-2020 Infrastructure Activity(No.730997)the Marie Sk?odowska Curie Actions Programme(No.690958)(MARSU)
文摘Rate coefficients for the reaction of N03 radicals with 6 unsaturated volatile organic compounds(VOCs) in a 7300 L simulation chamber at ambient temperature and pressure have been determined by the relative rate method.The resulting rate coefficients were determined for isoprene,2-carene,3-carene,methyl vinyl ketone(MVK),methacrolein(MACR)and crotonaldehyde(CA),as(6.6±0.8)×10-13,(1.8±0.6)×10-11,(8.7±0.5)×10-12,(1.24±1.04)×10-16,(3.3±0.9)×10-15 and(5.7±1.2)×10-15 cm3/(molecule·sec),respectively.The experiments indicate that NO3 radical reactions with all the studied unsaturated VOGs proceed through addition to the olefinic bond,however,it indicates that the introduction of a carbonyl group into unsaturated VOGs can deactivate the neighboring olefinic bond towards reaction with the NO3 radical,which is to be expected since the presence of these electronwithdrawing substituents will reduce the electron density in the π orbitals of the alkenes,and will therefore reduce the rate coefficient of these electrophilic addition reactions.In addition,we investigated the product formation from the reactions of 2-carene and 3-carene with the NO3 radical.Qualitative identification of an epoxide(C10H16OH+),caronaldehyde(C10H16O2 H+) and nitrooxy-ketone(C10H16O4 NH+) was achieved using a proton transfer reaction time-of-flight mass spectrometer(PTR-TOF-MS) and a reaction mechanism is proposed.
基金This work was supported by the National Nature Science Foundation of China(No.21503130 and No.11674212 to Yong-le Li,and No.21603144 to Jia-ning Song)Yong-le Li is also supported by the Young Eastern Scholar Program of the Shanghai Municipal Education Commission(No.QD2016021)+1 种基金the Shanghai Key Laboratory of High Temperature Superconductors(No.14DZ2260700)Jia-ning Song is also supported by Shanghai Sailing Program(No.2016YF1408400).
文摘The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients and kinetic isotope effects of the heavy-light-heavy abstract reaction Cl+XCl→XCl+Cl(X=H,D,Mu).For the Cl+HCl reaction,the excellent agreement between the RPMD and experimental values provides a strong proof for the accuracy of the RPMD theory.And the RPMD results are also consistent with results from other theoretical methods including improved-canonical-variational-theory and quantum dynamics.The most novel finding is that there is a double peak in Cl+MuCl reaction near the transition state,leaving a free energy well.It comes from the mode softening of the reaction system at the peak of the potential energy surface.Such an explicit free energy well suggests strongly there is an observable resonance.And for the Cl+DCl reaction,the RPMD rate coefficient again gives very accurate results compared with experimental values.The only exception is at the temperature of 312.5 K,results from RPMD and all other theoretical methods are close to each other but slightly lower than the experimental value,which indicates experimental or potential energy surface deficiency.
基金Project supported by the National Natural Science Foundation of China(Grant No.11774043).
文摘The reactive collisions of nitrogen ion with hydrogen and its isotopic variations have great significance in the field of astrophysics.Herein,the state-to-state quantum time-dependent wave packet calculations of N^(+)(3P)+HD→NH^(+)/ND^(+)+D/H reaction are carried out based on the recently developed potential energy surface[Phys.Chem.Chem.Phys.2122203(2019)].The integral cross sections(ICSs)and rate coefficients of both channels are precisely determined at the state-to-state level.The results of total ICSs and rate coefficients present a dramatic preference on the ND+product over the NH^(+)product,conforming to the long-lived complex-forming mechanism.Product state-resolved ICSs indicate that both the product molecules are difficult to excite to higher vibrational states,and the ND^(+)product has a hotter rotational state distribution.Moreover,the integral cross sections and rate coefficients are precisely determined at the state-to-state level and insights are provided about the differences between the two channels.The present results would provide an important reference for the further experimental studies at the finer level for this interstellar chemical reaction.The datasets presented in this paper,including the ICSs and rate coefficients of the two products for the title reaction,are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00034.
基金supported by the National Natural Science Foundation of China(No.22006101)the Natural Science Foundation of Liaoning Province(No.2023-MS-250)+3 种基金the Basic Scientific Research Foundation Project of Liaoning Province(No.LJKQZ20222283)the National Natural Science Foundation of China-Liaoning Joint Fund(No.U1908204)the Doctoral Research Start-up Fund of Shenyang Normal University(No.BS202124,No.BS202016)the Basic Scientific Research Project of Universities in Liaoning Province(No.LQN202007)。
文摘The fate of 2-nitrobenzaldehyde(2-NBA)is of interest in atmospheric chemistry as it is a semi-volatile organic compound with high photosensitivity.This study presents a quantum chemical study of the gas-phase reactions of 2-NBA photo-excitation and OH-oxidation in the absence and presence of small TiO_(2) clusters.To further understand the unknown photolysis mechanism,the photo-reaction pathways of ground singlet state and the lying excited triplet state of 2-NBA were investigated including the initial and subsequent reactions of proton transfer,direct CO,NO_(2),and HCO elimination routes in the presence of O_(2) and NO.Meanwhile,the OH-mediated degradation of 2-NBA proceeded via five H-extraction and six OH-addition channels by indirect mechanism,which follows a succession of reaction steps initiated by the formation of weakly stable intermediate complexes.The H-extraction from the-CHO group was the dominant pathway with a negative activation energy of-1.22 kcal/mol.The calculated rate coefficients at 200–600 K were close to the experimental data in literature within 308-352 K,and the kinetic negative temperature independence was found in both experimental literature and computational results.Interestingly,2-NBA was favored to be captured onto small TiO_(2) clusters via six adsorption configurations formed via various combination of three types of bonds of Ti…O,Ti…C,and O…H between the molecularly adsorbed 2-NBA and TiO_(2) clusters.Comparison indicted that the chemisorptions of aldehyde oxygen have largest energies.The results suggested adsorption conformations have a respectable impact on the catalysis barrier.This study is significant for understanding the atmospheric chemistry of 2-nitrobenzaldehyde.
基金supported by the National Natural Science Foundation of China(Nos.51808530 and 51778604)。
文摘More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation behavior of nano-silica particles with diameter 130–480 nm at different initial particle concentration, pH, ionic strength, and ionic valence of electrolytes. The modified Smoluchowski theory failed to describe the aggregation kinetics for nano-silica particles with diameters less than 190 nm. Besides, ionic strength, cation species and p H all affected fast aggregation rate coefficients of 130 nm nanoparticles. Through incorporating structural hydration force into the modified Smoluchowski theory, it is found that the reason for all the anomalous aggregation behavior was the different structural hydration layer thickness of nanoparticles with various sizes. The thickness decreased with increasing of particle size, and remained basically unchanged for particles larger than 190 nm. Only when the distance at primary minimum was twice the thickness of structural hydration layer, the structural hydration force dominated, leading to the higher stability of nanoparticles. This study clearly clarified the unique aggregation mechanism of nanoparticles with smaller size, which provided reference for predicting transport and fate of nanoparticles and could help facilitate the evaluation of their environment risks.
文摘X-ray emission spectra for L-shell of Li-like aluminium ions are simulated by using the flexible atomic code based on the collisional radiative model. Atomic processes including radiative recombination, dielectronic recombination, collisional ionization and resonance excitation from the neighbouring ion (Al^9+ and Al^11+ ) charge states of the target ion (Al^10+) are considered in the model. In addition, the contributions of different atomic processes to the x-ray spectrum are analysed. The results show that dielectronic recombination, radiative recombination, collisional ionization and resonance excitation, other than direct collisional excitation, are very important processes.
文摘When radionuclides migrate in porous media with water serving as carrier, the mechanism of sorption and desorption is not negligible. nonequilibrium conditions exist in sorption and desorption. In this paper,a numerical model of radionuclide migration with nonequilibrium sorption was developed.The algorithm of numerical descretizing and direct substituting was adopted in coupling of the convective-dispersive equation and the nonequilibrium sorption isotherm in this model ,and this makes it easier to solve the model numerically.A quantitative analysis is made for the first time that the influence of nonequilibrium sorption, represented by the rate coefficient which shows how quickly the nonequilibrium condition in sorption and desorption reaches equilibrium on the migration of radionuclide,and results show that it affects the migration perceptibly. Finally the model was verified by using the observed data of radionuclide migration test conducted in the field, and which clarified its availability.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10774026 and 10574029, the Programme for New Century Excellent Talents in University (NCET), and the Shanghai Leading Academic Discipline Project under Grant No B107.
文摘The KLn dielectronic recombination processes of trapped highly charged B-like through He-like Cu ions are studied theoretically, and the theoretical results are used to analyse our previous experimental data at Heidelberg electron beam ion trap (EBIT). The theoretical resonant positions agree with the experimental resonant positions to a precision of 0.4%, in comparison with the resonant positions of those highest peaks between theory and experiment. The experimental spectra are then fitted using a formula with the theoretical resonant energies and strengths, the result shows good overall agreement between theory and experiment over a wide electron energy range. The distribution of highly charged states is obtained from the fitting parameters.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10434100 and 10774122, the Foundation of China/Ireland Science and Technology Collaboration Research under Grant No CI-2004-07, the Specialized Research Fund for the Doctoral Programme of Higher Education of China under Grant No 20070736001, and the Foundation of Northwest Normal University under Grant No NWNU-KJCXGC-03-21.
文摘Based on the multi-configuration Dirac-Fock method, theoretical calculations are carried out for the dielectronic recombination (DR) rate coefficients and the collision excitation rate coefficients of Sn^10+ ions. It is found that the total DR rate coefficient has its maximum value between 10eV and 100eV and is greater than either the radiative recombination or three-body recombination rate coefficients (the number of free electrons per unit is 10^21 cm^3) for the ease of Te 〉 1 eV. Therefore, DR can strongly influence the ionization balance of laser produced multi-charged tin ions. The related dieleetronie satellite cannot be ignored at low temperature Te 〈 5 eV.
文摘The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation and molecule collision theory to predict the dissociation reaction rate coefficients. Upon comparison with available literature, the model was confirmed to be acceptably accurate in general. Several reaction rate coefficients of the NO/SO2/N2/O2 dissociation system were derived according to the Arrhenius formula. The activation energies of each plasma reaction were calculated by quantum chemistry methods. The relation between the dissociation reaction rate coefficient and electron temperature was established to describe the importance of each reaction and to predict relevant processes of gaseous chemical reactions. The sensitivity of the mechanism of NO/SO2/N2/O2 dissociation reaction in a non-thermal plasma was also analysed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10125520 and 10434050, and the Swedish Research Council (VR) under the Swedish Research Links Programme.
文摘A systematic study is carried out on the angular distribution and polarization of photons emitted following radiative-recombination of bare and He-like ions of Ne, At, Ni and Mo with a unidirectional electron beam. In order to incorporate the screening effect due to inner-shell electrons, a distorted wave method is used. Scaling rules for polarization of the photon following radiative recombination to both bare and He-like ions are given for the incident energy regions up to six times the ionization threshold energy of the final state.