期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
Synthesis of spinel LiMn_(2)O_(4) microspheres with durable high rate capability 被引量:2
1
作者 周玉波 邓远富 +2 位作者 袁伟豪 施志聪 陈国华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2541-2547,共7页
Spinel LiMn2O4 microspheres with durable high rate capability were synthesized by a facile route using spherical MnCO3 precursors as the self-supported templates, combined with the calcinations of LiNO3 at 700 °C... Spinel LiMn2O4 microspheres with durable high rate capability were synthesized by a facile route using spherical MnCO3 precursors as the self-supported templates, combined with the calcinations of LiNO3 at 700 °C for 8 h. The spherical MnCO3 precursors were obtained from the control of the crystallizing process of Mn2+ ions and NH4HCO3 in aqueous solution. The effects of the mole ratio of the raw materials, reaction time, and reaction temperature on the morphology and yield of the MnCO3 were investigated. The as-synthesized MnCO3 and LiMn2O4 microspheres were characterized by powder X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Galvanostatic charge/discharge tests indicate that the spinel LiMn2O4 microspheres deliver a discharge capacity of 90 mA-h/g at 10C rate show good capacity retention capability (75% of their initial capacity after 800 cycles at 10C rate). The durable high rate capability suggests that the as-synthesized LiMn2O4 microspheres are promising cathode materials for high power lithium ion batteries. 展开更多
关键词 MnCO_(3)microspheres self-supported template LiMn_(2)O_(4) microspheres rate capability
在线阅读 下载PDF
Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries 被引量:5
2
作者 Yong Tong Yuanji Wu +3 位作者 Zihao Liu Yongshi Yin Yingjuan Sun Hongyan Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期127-132,共6页
Due to the abundant sodium reserves and high safety,sodium ion batteries(SIBs)are foreseen a promising future.While,hard carbon materials are very suitable for the anode of SIBs owing to their structure and cost advan... Due to the abundant sodium reserves and high safety,sodium ion batteries(SIBs)are foreseen a promising future.While,hard carbon materials are very suitable for the anode of SIBs owing to their structure and cost advantages.However,the unsatisfactory initial coulombic efficiency(ICE)is one of the crucial blemishes of hard carbon materials and the slow sodium storage kinetics also hinders their wide application.Herein,with spherical nano SiO_(2)as pore-forming agent,gelatin and polytetrafluoroethylene as carbon sources,a multi-porous carbon(MPC)material can be easily obtained via a co-pyrolysis method,by which carbonization and template removal can be achieved synchronously without the assistance of strong acids or strong bases.As a result,the MPC anode exhibited remarkable ICE of 83%and a high rate capability(208 m Ah/g at 5 A/g)when used in sodium-ion half cells.Additionally,coupling with Na3V2(PO4)3as the cathode to assemble full cells,the as-fabricated MPC//NVP full cell delivered a good rate capability(146 m Ah/g at 5 A/g)as well,implying a good application prospect the MPC anode has. 展开更多
关键词 Multi-porous carbon Initial coulombic efficiency rate capability Sodium ion batteries Silica template
原文传递
Uniform AlF_3 thin layer to improve rate capability of LiNi_(1/3)Co_(1/3) Mn_(1/3)O_2 material for Li-ion batteries 被引量:3
3
作者 王海燕 唐爱东 +1 位作者 黄可龙 刘素琴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期803-808,共6页
LiNi1/3Co1/3Mn1/3O2 was coated with uniform nano-sized AlF3 layer by chemical precipitation method to improve its rate capability.The samples were characterized by X-ray diffractometry (XRD),transmission electron micr... LiNi1/3Co1/3Mn1/3O2 was coated with uniform nano-sized AlF3 layer by chemical precipitation method to improve its rate capability.The samples were characterized by X-ray diffractometry (XRD),transmission electron microscopy (TEM),energy dispersive spectroscopy (EDS),charge-discharge cycling,cyclic voltammetry (CV),and electrochemical impedance spectroscopy (EIS).Uniform coated layer with a thickness of about 3 nm was observed on the surface of LiNi1/3Co1/3Mn1/3O2 particle by TEM.At 0.5C and 2C rates,1.5% (mass fraction) AlF3-coated LiNi1/3Co1/3Mn1/3O2/Li in 2.8-4.3 V versus Li/Li+ after 80 cycles showed less than 3% of capacity fading,while those of the bare one were 16.5% and 45.9%,respectively.At 5C rate,the capacity retention of the coated sample after 50 cycles maintained 91.4% of the initial discharge capacity,while that of the bare one decreased to 52.6%.EIS result showed that a little change of charge transfer resistance of the coated sample resulting from uniform thin AlF3 layer was proposed as the main reason why its rate capability was improved obviously.CV result further indicated a greater reversibility for the electrode processes and better electrochemical performance of AlF3-coated layer. 展开更多
关键词 Li-ion battery LINI1/3CO1/3MN1/3O2 coating uniform thin AlF3 layer rate capability
在线阅读 下载PDF
Mesh-like vertical structures enable both high areal capacity and excellent rate capability 被引量:1
4
作者 Ruyi Chen Jialu Xue +10 位作者 Yujiao Gong Chenyang Yu Zengyu Hui Hai Xu Yue Sun Xi Zhao Jianing An Jinyuan Zhou Qiang Chen Gengzhi Sun Wei Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期226-233,I0008,共9页
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vert... In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm^(-2) and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm^(-2) but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm^(-2);the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm^(-2)(246.9 mAh g^(-1)) at 3 mA cm^(-2) and outstanding rate performance with 84.7% retention at 30 mA cm^(-2),suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm^(-2) at the power density of 2.14 mW cm^(-2) with excellent electrochemical cycling stability. 展开更多
关键词 Mesh-like structure Ultrahigh areal capacity Excellent rate capability Hybrid supercapacitors Wearable energy storage
在线阅读 下载PDF
Sb-Cu alloy cathode with a novel lithiation mechanism of ternary intermetallic formation: Enabling high energy density and superior rate capability of liquid metal battery
5
作者 Peng Chu Jie Wang +5 位作者 Hongliang Xie Qian Zhang Jiangyuan Feng Zehao Li Zhao Yang Hailei Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期393-400,I0011,共9页
Antimony(Sb) is an attractive cathode for liquid metal batteries(LMBs) because of its high theoretical voltage and low cost.The main obstacles associated with the Sb-based cathodes are unsatisfactory energy density an... Antimony(Sb) is an attractive cathode for liquid metal batteries(LMBs) because of its high theoretical voltage and low cost.The main obstacles associated with the Sb-based cathodes are unsatisfactory energy density and poor rate-capability.Herein,we propose a novel Sb_(64)Cu_(36)cathode that effectively tackles these issues.The Sb_(64)Cu_(36)(melting point:525℃) cathode presents a novel lithiation mechanism involving sequentially the generation of Li_(2)CuSb,the formation of Li_(3)Sb,and the conversion reaction of Li_(2)CuSb to Li_(3)Sb and Cu.The generated intermetallic compounds show a unique microstructure of the upper floated Li_(2)CuSb layer and the below cross-linked structure with interpenetrated Li_(2)CuSb and Li_(3)Sb phases.Compared with Li_(3)Sb,the lower Li migration energy barrier(0.188 eV) of Li_(2)CuSb significantly facilitates the lithium diffusion across the intermediate compounds and accelerates the reaction kinetics.Consequently,the Li‖Sb_(64)Cu_(36)cell delivers a more excellent electrochemical performance(energy density:353 W h kg^(-1)at 0.4 A cm^(-2);rate capability:0.59 V at 2.0 A cm^(-2)),and a much lower energy storage cost of only 38.45 $ kW h^(-1)than other previously reported Sb-based LMBs.This work provides a novel cathode design concept for the development of high-performance LMBs in applications for large-scale energy storage. 展开更多
关键词 Liquid metal battery Energy density rate capability Low cost Sb_(64)Cu_(36)cathode
在线阅读 下载PDF
Enhanced rate capability and cycle stability of Ti_(2)C MXene for sodium storage through an aniline molecules welding strategy
6
作者 Hao Chen Ya-Qin Wang +5 位作者 Dong-Ting Zhang Bei Zhao Min-Peng Li Chen-Yang Li Tian-Peng Xu Mao-Cheng Liu 《Tungsten》 2025年第1期161-171,共11页
MXenes obtained significant attention in the field of energy storage devices due to their characteristic layered structure,modifiable surface functional groups,large electrochemically active surface,and regulable inte... MXenes obtained significant attention in the field of energy storage devices due to their characteristic layered structure,modifiable surface functional groups,large electrochemically active surface,and regulable interlayer spacing.Nonetheless,the self-restacking and sluggish ions diffusion kinetics performance of MXenes during the alkali metal ions insertion/extraction process severely impedes their cycle stability and rate capability.This paper proposes an aniline molecule welding strategy for welding p-phenylenediamine(PPDA)into the interlayers of Ti_(2)C through a dehydration condensation reaction.The welded PPDA molecules can contribute pillar effect to the layered structure of Ti_(2)C.The pillar effect effectively maintains the structural stability during the sodium ions insertion/extraction process and effectively expands the interlayer spacing of Ti_(2)C from 1.16 to 1.38 nm,thereby enhancing ions diffusion kinetics performance and improving the long-term cycle stability.The Ti_(2)C-PPDA demonstrates outstanding Na+storage capability,exhibiting a specific capacity of 100.2 mAh·g^(-1)at a current density of 0.1 A·g^(-1)over 960 cycles and delivering a remarkable rate capability 81.2 mAh·g^(-1)at a current density of 5 A·g^(-1).The study demonstrates that expanding interlayer spacing is a promising strategy to enhance the Na+storage capacity and improve long-term cycling stability,which provides significant guidance for the design of two-dimensional Na+storage materials with high-rate capability and cycle stability. 展开更多
关键词 Ti_(2)C.Expanding interlayer spacing Sodium ions storage Diffusion kinetics rate capability
原文传递
A Facile Method to Improve the High Rate Capability of Co_(3)O_(4)Nanowire Array Electrodes 被引量:12
7
作者 Hua Cheng Zhou Guang Lu +3 位作者 Jian Qiu Deng C.Y.Chung Kaili Zhang Yang Yang Li 《Nano Research》 SCIE EI CSCD 2010年第12期895-901,共7页
The capability of fast charge and fast discharge is highly desirable for the electrode materials used in supercapacitors and lithium ion batteries.In this article,we report a simple strategy to considerably improve th... The capability of fast charge and fast discharge is highly desirable for the electrode materials used in supercapacitors and lithium ion batteries.In this article,we report a simple strategy to considerably improve the high rate capability of Co_(3)O_(4)nanowire array electrodes by uniformly loading Ag nanoparticles onto the surfaces of the Co_(3)O_(4)nanowires via the silver-mirror reaction.The highly electrically conductive silver nanoparticles function as a network for the facile transport of electrons between the current collectors(Ti substrates)and the Co_(3)O_(4)active materials.High capacity as well as remarkable rate capability has been achieved through this simple approach.Such novel Co_(3)O_(4)-Ag composite nanowire array electrodes have great potential for practical applications in pseudo-type supercapacitors as well as in lithium ion batteries. 展开更多
关键词 Cobalt oxide(Co_(3)O_(4)) nanowire arrays electrode materials SUPERCAPACITORS lithium ion batteries high rate capability
原文传递
Conductive Ni3(HITP)2 MOFs thin films for flexible transparent supercapacitors with high rate capability 被引量:5
8
作者 Weiwei Zhao Tiantian Chen +7 位作者 Weikang Wang Beibei Jin Jiali Peng Shuaihang Bi Mengyue Jiang Shujuan Liu Qiang Zhao Wei Huang 《Science Bulletin》 SCIE EI CAS CSCD 2020年第21期1803-1811,M0003,M0004,共11页
The flexible transparent supercapacitors have been considered as one of the key energy-storage components to power the smart portable electronic devices.However,it is still a challenge to explore flexible transparent ... The flexible transparent supercapacitors have been considered as one of the key energy-storage components to power the smart portable electronic devices.However,it is still a challenge to explore flexible transparent capacitive electrodes with high rate capability.Herein,conductive Ni3(HITP)2(HITP=2,3,6,7,10,11-hexaiminotriphenylene)thin films are adopted as capacitive electrodes in flexible transparent supercapacitors.The Ni3(HITP)2 electrode possesses the excellent optoelectronic property with optical transmittance(T)of 78.4%and sheet resistance(Rs)of 51.3Ωsq-1,remarkable areal capacitance(CA)of 1.63 mF cm^-2and highest scan rate up to 5000 mV s-1.The asymmetric Ni3(HITP)2//PEDOT:PSS supercapacitor(T=61%)yields a high CA of 1.06 mF cm^-2at 3μA cm-2,which maintains 77.4%as the current density increases by 50 folds.The remarkable rate capability is ascribed to the collaborative advantages of low diffusion resistance and high ion accessibility,resulting from the intrinsic conductivity,short oriented pores and large specific areas of Ni3(HITP)2 films. 展开更多
关键词 Conductive film Metal-organic frameworks Collaborative advantages Flexible transparent supercapacitors High rate capability
原文传递
Ultrahigh rate capability of 1D/2D polyaniline/titanium carbide(MXene)nanohybrid for advanced asymmetric supercapacitors 被引量:4
9
作者 Jinhua Zhou Qi Kang +10 位作者 Shuchi Xu Xiaoge Li Cong Liu Lu Ni Ningna Chen Chunliang Lu Xizhang Wang Luming Peng Xuefeng Guo Weiping Ding Wenhua Hou 《Nano Research》 SCIE EI CSCD 2022年第1期285-295,共11页
High energy density and enhanced rate capability are highly sought-after for supercapacitors in today's mobile world.In this work,polyaniline/titanium carbide(MXene)(PANI/Ti3C2Tx)nanohybrid is synthesized through ... High energy density and enhanced rate capability are highly sought-after for supercapacitors in today's mobile world.In this work,polyaniline/titanium carbide(MXene)(PANI/Ti3C2Tx)nanohybrid is synthesized through a facile and cost-effective self-assembly of.one-dimensional(10)PANI nanofibers and two-dimensional(20)Ti3C2Tx nanosheets.PANl!Ti3C2Tx delivers greatly improved specific capacitance,ultrahigh rate capability(67%capacitance retention from 1 to 100 A·g^(-1))as well as good cycle stability.Electrochemical kinetic analysis reveals that PANI/Ti3C2Tx is featured with surface capacitance-dominated process and has a quasi-reversible kinetics at high scan rates,giving rise to an ultrahigh rate capability.By using PANl!Ti3C2Tx as positive electrode,an 1.8 V aqueous asymmetric supercapacitor(ASC)is successfully assembled,showing a maximum energy density of 50.8 Wh·kg^(-1)·(at 0.9 kW-kg-1)and a power density of 18 kW·kg^(-1)(at 26 Wh·kg^(-1)).Moreover,an 3.0 V organic ASC is also elaborately fabricated,·by using PANI/Ti3C2Tx,achieving an ultrahigh energy density of 67.2 Wh·kg^(-1)(at 1.5 kW·kg^(-1))and a power density of 30 kW·kg^(-1)·(at 26.8 Wh·kg^(-1)).The present work not only improves fundamental understanding of the structure-property relationship towards ultrahigh rate capability electrode materials,but also provides valuable guideline for the rational design of high-performance:energy storage devices with both high energy and power densities. 展开更多
关键词 MXene POLYANILINE NANOHYBRID asymmetric supercapacitor rate capability
原文传递
NiCoSe2/Ni3Se2 lamella arrays grown on N-doped graphene nanotubes with ultrahigh-rate capability and long-term cycling for asymmetric supercapacitor 被引量:3
10
作者 Alan Meng Tong Shen +4 位作者 Tianqi Huang Guanying Song Zhenjiang Li Shuqin Tan Jian Zhao 《Science China Materials》 SCIE EI CSCD 2020年第2期229-239,共11页
In this paper, we report a one-step electrodeposited synthesis strategy for directly growing NiCoSe2/Ni3Se2 lamella arrays(LAs) on N-doped graphene nanotubes(N-GNTs) as advanced free-standing positive electrode for as... In this paper, we report a one-step electrodeposited synthesis strategy for directly growing NiCoSe2/Ni3Se2 lamella arrays(LAs) on N-doped graphene nanotubes(N-GNTs) as advanced free-standing positive electrode for asymmetric supercapacitors. Benefiting from the synergetic contribution between the distinctive electroactive materials and the skeletons, the as-constructed N-GNTs@NiCoSe2/Ni3-Se2LAs present a specific capacitance of ~1308 F g^-1 at a current density of 1 A g^-1. More importantly, the hybrid electrode also reveals excellent rate capability(~1000 F g^-1 even at 100 A g^-1) and appealing cycling performance(~103.2% of capacitance retention over 10,000 cycles). Furthermore, an asymmetric supercapacitor is fabricated by using the obtained N-GNTs@NiCoSe2/Ni3Se2LAs and active carbon(AC) as the positive and negative electrodes respectively,which holds a high energy density of 42.8 W h kg^-1 at 2.6 k W kg^-1, and superior cycling stability of ~94.4% retention over 10,000 cycles. Accordingly, our fabrication technique and new insight herein can both widen design strategy of multicomponent composite electrode materials and promote the practical applications of the latest emerging transition metal selenides in next-generation high-performance supercapacitors. 展开更多
关键词 NiCoSe2/Ni3 Se2 lamella arrays electrodeposition Ndoped graphene nanotubes rate capability asymmetric supercapacitor
原文传递
Rational design of 3D porous niobium carbide MXene/rGO hybrid aerogels as promising anode for potassium-ion batteries with ultrahigh rate capability 被引量:2
11
作者 Cong Liu Zhitang Fang +6 位作者 Xiaoge Li Jinhua Zhou Gang Yang Luming Peng Xuefeng Guo Weiping Ding Wenhua Hou 《Nano Research》 SCIE EI CSCD 2023年第2期2463-2473,共11页
An effective method is designed to construct three-dimensional(3D)Nb_(2)C/reduced graphene oxide(rGO)hybrid aerogels through a low-temperature graphene oxide(GO)-assisted hydrothermal self-assembly followed by freeze-... An effective method is designed to construct three-dimensional(3D)Nb_(2)C/reduced graphene oxide(rGO)hybrid aerogels through a low-temperature graphene oxide(GO)-assisted hydrothermal self-assembly followed by freeze-drying and annealing.The intimately coupled Nb_(2)C/rGO hybrid aerogel combines the advantages of large specific surface area and rich 3D interconnected porous structure of aerogel as well as high conductivity and low potassium diffusion energy barrier of Nb_(2)C,which not only effectively prevents the self-restacking of Nb2C nanosheets to allow more active sites exposed and accommodate the volume change during the charge/discharge process,but also increases the accessibility of electrolyte and promotes the rapid transfer of ions/electrons.As a result,Nb_(2)C/rGO-2 as the anode of potassium ion batteries(KIBs)delivers a large reversible specific capacity(301.7 mAh·g^(−1)after 500 cycles at 2.0 A·g^(−1)),an ultrahigh rate capability(155.5 mAh·g^(−1)at 20 A·g^(−1)),and an excellent long-term large-current cycle stability(198.8 mAh·g^(−1)after 1,000 cycles at 10 A·g^(−1),with a retention of 83.3%).Such a high-level electrochemical performance,especially the ultrahigh rate capability,is the best among transition metal carbides and nitride(MXene)-based materials reported so far for KIBs.The diffusion kinetics of K+is investigated thoroughly,and the synergetic charge–discharge mechanism and the structure–performance relationship of Nb_(2)C/rGO are revealed explicitly.The present work provides a good strategy to solve the self-restacking problem of two-dimensional materials and also enlarges the potential applications of MXenes. 展开更多
关键词 niobium-based transition metal carbides(Nb_(2)C MXene) reduced graphene oxide(rGO) hybrid aerogel potassium ion batteries ultrahigh rate capability
原文传递
Pr doped single-crystal LiNi_(0.5)Mn_(0.3)Co_(0.2)O_(2)cathode enables high rate capability and cycle stability for lithium ion batteries 被引量:1
12
作者 Xiaopei Zhu Han Yu +3 位作者 Lina Cheng Feifei Xu Zilu Wang Li-Zhen Fan 《Journal of Materiomics》 SCIE CSCD 2023年第1期82-89,共8页
The massive application of single crystal(SC)ternary cathode material LiNi_(1-x-y)Mn_(x)Co_(y)O_(2)is largely restricted by the unsatisfactory rate capability which is caused by the sluggish Li+diffusion and structura... The massive application of single crystal(SC)ternary cathode material LiNi_(1-x-y)Mn_(x)Co_(y)O_(2)is largely restricted by the unsatisfactory rate capability which is caused by the sluggish Li+diffusion and structural instability.Herein,Pr^(3+),a large radius ion is introduced to single-crystal LiNi_(0.5)Mn_(0.3)Co_(0.2)O_(2)to enhance Li^(+)conductivity and structural stability.With 0.4%Pr doping,the Li(Ni_(0.5)Mn_(0.3)Co_(0.2))_(0.996)Pr_(0.004)O_(2)cathode displays a capacity retention of 79.72%at 10 C,and a 98.17%capacity retention after 50 cycles at 25°C and 96.3%capacity retention after 50 cycles at 55°C within a 3.0–4.5 V voltage window.Electrochemical impedance spectroscopy confirms that the Pr doping can effectively lower the charge-transfer resistance and facilitate the transportation of Li^(+)on the surface of LiNi_(0.5)Mn_(0.3)Co_(0.2)O_(2).The Direct current internal resistance result implies that the structure of the Pr-doped cathode particles is more stable during cycling.In addition,differential scanning calorimetry measurements measurement combined with in situ X-ray diffraction confirms the thermo-stabilization effect of the Pr dopant. 展开更多
关键词 Single-crystal cathode material Pr doping rate capability Safety Lithium-ion battery
原文传递
Surface decoration of mesocarbon microbeads with multifunctional TiNbO_(4-x)@C coating layer as high rate and stable anode of Li-ion batteries 被引量:1
13
作者 Jia-Mei Lai Zhi-Min Zou +2 位作者 Yu Bai Yu-Tao Xing Chun-Hai Jiang 《Rare Metals》 SCIE EI CAS CSCD 2024年第5期2053-2066,共14页
Surface modification of graphite anode with electroactive matters has been proven of a more practical strategy in enhancing the performance of Li-ion batteries than exploring alternative novel anode materials.Herein,r... Surface modification of graphite anode with electroactive matters has been proven of a more practical strategy in enhancing the performance of Li-ion batteries than exploring alternative novel anode materials.Herein,rutile TiNbO_(4-x) nanoparticles with a tunnel structure are employed as multifunctional decoration substances in combination with a carbon coating layer to improve the rate and cycle properties of mesocarbon microbeads(MCMBs).As compared to pristine MCMB,the Li^(+)diffusion coefficients of the composite anodes are enhanced due to the synergistic effect of TiNbO_(4-x)@C.Meanwhile,the overcharge and voltage polarization of the composite anodes at high rate are obviously minimized due to the current sharing effect of the high-potential TiNbO_(4-x).Moreover,the amorphous Li_(y)TiNbO_(4-x) converted from TiNbO_(4-x) in the initial lithiation process can deliver pseudocapacitive capacity to the composite anodes from the second cycle.All of these functions of TiNbO_(4-x)@Ccoating layer have directly contributed to the improved rate and cycle performance of the MCMB/TiNbO_(4-x)@C composite anodes.The one containing 12.0 wt%TiNbO_(4-x) exhibits a high reversible specific capacity of 118 m Ah·g^(-1)at 10C(1C=372 m A·g^(-1)),together with a high capacity retention of 90.9%after 300 cycles at 3C,which are all much superior to those of pristine MCMB. 展开更多
关键词 Li-ion batteries MCMB TiNbO_(4-x)@C Surface decoration rate capability
原文传递
High-rate metal-free MXene microsupercapacitors on paper substrates
14
作者 Han Xue Po‐Han Huang +11 位作者 Lee‐Lun Lai Yingchun Su Axel Strömberg Gaolong Cao Yuzhu Fan Sergiy Khartsev Mats Göthelid Yan‐Ting Sun Jonas Weissenrieder Kristinn BGylfason Frank Niklaus Jiantong Li 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期94-104,共11页
MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(... MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(>1000 mV s^(−1))on-paper MSCs,mainly due to the reduced electrical conductance of MXene films deposited on paper.Herein,ultrahigh-rate metal-free on-paper MSCs based on heterogeneous MXene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)-stack electrodes are fabricated through the combination of direct ink writing and femtosecond laser scribing.With a footprint area of only 20 mm^(2),the on-paper MSCs exhibit excellent high-rate capacitive behavior with an areal capacitance of 5.7 mF cm^(−2)and long cycle life(>95%capacitance retention after 10,000 cycles)at a high scan rate of 1000 mV s^(−1),outperforming most of the present on-paper MSCs.Furthermore,the heterogeneous MXene/PEDOT:PSS electrodes can interconnect individual MSCs into metal-free on-paper MSC arrays,which can also be simultaneously charged/discharged at 1000 mV s^(−1),showing scalable capacitive performance.The heterogeneous MXene/PEDOT:PSS stacks are a promising electrode structure for on-paper MSCs to serve as ultrafast miniaturized energy storage components for emerging paper electronics. 展开更多
关键词 direct ink writing femtosecond laser scribing MXene on-paper microsupercapacitors PEDOT:PSS ultrahigh rate capability
在线阅读 下载PDF
Supercritical-hydrothermal accelerated solid state reaction route for synthesis of LiMn_2O_4 cathode material for high-power Li-ion batteries 被引量:2
15
作者 刘学武 汤洁 +2 位作者 覃旭松 邓远富 陈国华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1414-1424,共11页
Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction tem... Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction temperature and reaction time of SH route, and the calcination temperature of SSR route on the purity, particle morphology and electrochemical properties of the prepared LiMn2O4 materials were studied. The experimental results show that after 15 min reaction in SH route at 400 ℃ and 30 MPa, the reaction time of SSR could be significantly decreased, e.g. down to 3 h with the formation temperature of 800 ℃, compared with the conventional solid state reaction method. The prepared LiMn2O4 material exhibits good crystallinity, uniform size distribution and good electrochemical performance, and has an initial specific capacity of 120 mA.h/g at a rate of 0.1C (1C=148 mA/g) and a good rate capability at high rates, even up to 50C. 展开更多
关键词 lithium ion battery LIMN2O4 supercritical water solid state reaction high rate capability
在线阅读 下载PDF
Isovalent doping of tin in sodium trititanate for enhanced sodium-ion battery performance
16
作者 Xin Jin Fujie Li +5 位作者 Xuguang Zhang Guangrong Zeng Xuehua Liu Bin Cai Chao Wang Xiu Song Zhao 《Journal of Energy Chemistry》 2025年第4期324-332,共9页
Layered sodium trititanate(Na_(2)Ti_(3)O_(7),NTO)is a promising anode material for sodium-ion batteries(NIBs)for large-scale energy storage applications because of its relatively low charge potential and low cost.Howe... Layered sodium trititanate(Na_(2)Ti_(3)O_(7),NTO)is a promising anode material for sodium-ion batteries(NIBs)for large-scale energy storage applications because of its relatively low charge potential and low cost.However,NTO suffers from unsatisfactory structural stability against cycling and poor electron conductivity.Herein,an isovalent doping strategy using Sn^(4+)to partially replace Ti^(4+)is demonstrated for improving the cycling stability and rate capability of NTO.The isovalent doping of Sn^(4+)does not alter the valence state of Ti^(4+),thus maintaining the lattice integrality and structural stability.Moreover,the Sn^(4+)dopant creates more Na^(+)-preferable travel channels and expands the interlayer spacing,thus increasing Na^(+)diffusivity.As a result,a Sn^(4+)-doped Na_(2)Ti_(3)O_7(NSTO)electrode exhibits a reversible Na^(+)storage specific capacity of 176 mA h g^(-1)at 0.1C and an ultra-long cycling life with 80.2%capacity retention after5000 cycles at 1C,far outperforming the undoped and aliovalent-doping NTO electrodes reported in the literature.In addition,the NSTO electrode delivers a rate capability of 102 mA h g^(-1)at 5C,higher than that of the NTO electrode(62 mA h g^(-1)).In situ X-ray diffraction characterization results reveal that Na^(+)storage in NSTO undergoes a partial solid-solution reaction mechanism,which is completely different from the two-phase transition mechanism of NTO.Density functional theory calculation results demonstrate that Sn^(4+)doping strengthens the Ti-O bond,contributing to structural stability.This work provides a robust approach to significantly improving the electrochemical performance of NTO-based anode materials for developing long-life NIBs. 展开更多
关键词 Sodium-ion battery Sodium trititanate Isovalent doping Cycling stability rate capability
在线阅读 下载PDF
Embedding CoS_(2) nanoparticles within hierarchically porous carbon matrix for enhanced sodium-ion storage and cyclic stability
17
作者 Hong Yin Bo Xiao +5 位作者 Zhi-Peng Yu Joao Cunha İhsan Çaha Tian-Qi Zhang Zhao-Hui Hou Gang-Yong Li 《Rare Metals》 2025年第8期5370-5382,共13页
Cubic phase cobalt disulfide(CoS_(2))is recognized as a potential negative material for sodium-ion batteries(SIBs)because of its low band gap,simple synthesis process,and high capacity.Nonetheless,the challenges of sl... Cubic phase cobalt disulfide(CoS_(2))is recognized as a potential negative material for sodium-ion batteries(SIBs)because of its low band gap,simple synthesis process,and high capacity.Nonetheless,the challenges of slow ion diffusion and substantial volume change during cycling,resulting in inadequate rate and cycling performances,remain unresolved.Here,a porous structure is fabricated by etching electrospun carbon nanofibers,subsequently facilitating the growth of CoS_(2)nanoparticles at the pore locations.A nitrogen-doped carbon layer is then applied to the surface to buffer the volumetric expansion effect of CoS_(2).The findings indicate that the carbon nanofibers establish a stable conductive network,while the porous architecture of the carbon fibers,in conjunction with the carbon coating,efficiently mitigates volumetric expansion.Furthermore,density functional theory(DFT)studies show the presence of an interlayer van der Waals force between the sulfur atoms in CoS_(2)and the carbon atoms,which reduces the band gap,enhances the conductivity of the structure,and lowers the energy barrier of Na^(+)migration.The as-prepared anode achieves a reversible capacity of 302.6 mAh g^(-1)at 3.2 A g^(-1)and maintains a capacity of 384.6 mAh g^(-1)at 1.0 A g^(-1)over 800 cycles,demonstrating exceptional rate performance and improved cycling stability.This work shows that the combination of hierarchical porous architecture and a unique electronic structure offers valuable insights for designing high-performance negative materials for SIB s. 展开更多
关键词 Cobalt disulfide Sodium-ion battery Carbon nanofiber Na^(+)adsorption rate capability
原文传递
Enabling durable sodium storage of Fe-based fluorophosphate cathode via anion substitution
18
作者 Zheng Li Zechen Li +3 位作者 Yanzhe Zhang Xuanyi Yuan Haibo Jin Yongjie Zhao 《Journal of Energy Chemistry》 2025年第10期850-858,共9页
Na_(2)FePO_(4)F is a promising sodium ion cathode due to its low cost,non-toxicity,and high stability.However,the sluggish Na^(+)diffusion kinetics and limited intrinsic electronic conductivity critically restrict its... Na_(2)FePO_(4)F is a promising sodium ion cathode due to its low cost,non-toxicity,and high stability.However,the sluggish Na^(+)diffusion kinetics and limited intrinsic electronic conductivity critically restrict its worldwide application.Herein,an anion-substitution strategy is proposed with SiO_(4)^(4-)as the dopant.SiO_(4)^(4-)substitution for PO_(4)^(3-)can apparently alter the localized electronic density and structural configuration in the lattice of Na_(2)FePO_(4)F,effectively elevating the charge transfer efficiency.As a result,the electrochemical reaction kinetics of Na_(2)FePO_(4)F is significantly enhanced,which is well demonstrated by a series of electrochemical characterizations.As-obtained Na_(2.2)Fe(PO_(4))_(0.8)(SiO_(4))_(0.2)F renders a specific capacity of 84.9 m A h g^(-1)within the region of 2.5-4.0 V at 60 mA g^(-1)(0.5 C),good rate capability,and a capacity retention of 70.0% after 1000 cycles at 1.24 A g^(-1)(10 C).Furthermore,the stabilities of the cathode-electrolyte interface and structure are strengthened,which are verified by in situ EIS and ex situ XRD analysis.These findings highlight silicate anion substitution as a promising and cost-effective strategy for overcoming the limitations of Na_(2)FePO_(4)F,contributing to the development of sustainable energy storage solutions. 展开更多
关键词 Sodium ion cathode Anion substitution Enhanced diffusion kinetics Cycling stability rate capability
在线阅读 下载PDF
Cobalt-Nickel Cyano Coordination Polymer-Derived Square CoSe_(2)@NiSe_(2)Nanosheets for Advanced Na^(+)/K^(+)Batteries
19
作者 Peng Yang Jian Zhou +1 位作者 Yufei Zhang Haosen Fan 《Acta Metallurgica Sinica(English Letters)》 2025年第8期1340-1350,共11页
Sodium-ion batteries are receiving more and more attention due to their low cost and abundant sodium storage capacity,and are considered to be a promising alternative to lithium-ion batteries.A large number of studies... Sodium-ion batteries are receiving more and more attention due to their low cost and abundant sodium storage capacity,and are considered to be a promising alternative to lithium-ion batteries.A large number of studies have shown that constructing heterostructures are considered an effective strategy to solve the hysteresis problem of electronic and ion dynamics in sodiumion battery anode materials.Herein,a nickel-cobalt bimetallic coordination polymer(NiCoCP)was synthesized using a coprecipitation method,and a CoSe_(2)@NiSe_(2) cross-stacked structure was obtained through high-temperature carbonization and selenization processes.CoSe_(2)@NiSe_(2) has a unique heterostructure and carbon film,which synergistically increases a large number of adsorption sites and alleviates the diffusion energy barrier,thereby improving the rapid diffusion kinetics of Na^(+)ions.It has superior rate performance and long-lasting cycle life.For sodium-ion batteries(SIBs),the specific capacity of CoSe_(2)@NiSe_(2) is around 460 mA h g^(-1) after 400 cycles at 1.0 A g^(-1).For potassium-ion batteries(PIBs),CoSe_(2)@NiSe_(2) also exhibits excellent cycling stability,maintaining a specific capacity of 160 mA h g^(-1) after 700 cycles at 1.0 A g^(-1).This study provides a new way to prepare metal selenide heterostructure as the promising anode material for SIBs. 展开更多
关键词 CoSe_(2)/NiSe_(2)heterostructure rate capability Ultralong lifespan Square nanosheets Na^(+)/K^(+)batteries
原文传递
Electrolyte/Structure‑Dependent Cocktail Mediation Enabling High‑Rate/Low‑Plateau Metal Sulfide Anodes for Sodium Storage 被引量:3
20
作者 Yongchao Tang Yue Wei +10 位作者 Anthony F.Hollenkamp Mustafa Musameh Aaron Seeber Tao Jin Xin Pan Han Zhang Yanan Hou Zongbin Zhao Xiaojuan Hao Jieshan Qiu Chunyi Zhi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期280-293,共14页
As promising anodes for sodium-ion batteries,metal sulfides ubiquitously suffer from low-rate and high-plateau issues,greatly hindering their application in full-cells.Herein,exemplifying carbon nanotubes(CNTs)-string... As promising anodes for sodium-ion batteries,metal sulfides ubiquitously suffer from low-rate and high-plateau issues,greatly hindering their application in full-cells.Herein,exemplifying carbon nanotubes(CNTs)-stringed metal sulfides superstructure(CSC)assembled by nano-dispersed SnS_(2) and CoS_(2) phases,cocktail mediation effect similar to that of high-entropy materials is initially studied in ether-based electrolyte to solve the challenges.The high nano-dispersity of metal sulfides in CSC anode underlies the cocktail-like mediation effect,enabling the circumvention of intrinsic drawbacks of different metal sulfides.By utilizing ether-based electrolyte,the reversibility of metal sulfides is greatly improved,sustaining a long-life effectivity of cocktail-like mediation.As such,CSC effectively overcomes low-rate flaw of SnS_(2) and highplateau demerit of CoS_(2),simultaneously realizes a high rate and a low plateau.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g^(−1) anode at 20 A g^(−1),far outperforming those of monometallic sulfides(SnS_(2),CoS_(2))and their mixtures.Compared with CoS_(2) phase and SnS_(2)/CoS_(2) mixture,CSC shows remarkably lowered average charge voltage up to ca.0.62 V.As-assembled CSC//Na1.5VPO4.8F0.7 full-cell shows a good rate capability(0.05~1.0 A g^(−1),120.3 mAh g^(−1) electrode at 0.05 A g^(−1))and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics analysis verifies that the cocktail-like mediation effect largely boosts the charge transfer and ionic diffusion in CSC,compared with single phase and mixed phases.Further mechanism study reveals that alternative and complementary electrochemical processes between nano-dispersed SnS_(2) and CoS_(2) phases are responsible for the lowered charge voltage of CSC.This electrolyte/structure-dependent cocktail-like mediation effect effectively enhances the practicability of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries. 展开更多
关键词 Metal sulfide anode rate capability Voltage plateau Cocktail mediation effect Sodium-ion batteries
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部