In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni...In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.展开更多
Two kinds of high strength-damping aluminum alloys (LZ7) were fabricated by rapid solidification and powder metallurgy (RS-PM) process. One material was extruded to profile aluminum directly and the other was extr...Two kinds of high strength-damping aluminum alloys (LZ7) were fabricated by rapid solidification and powder metallurgy (RS-PM) process. One material was extruded to profile aluminum directly and the other was extruded to bar and then rolled to sheet. The damping capacity over a temperature range of 25-300 ℃was studied with damping mechanical thermal analyzer (DMTA) and the microstructures were investigated by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that the damping capacity increases with the test temperature elevating. Internal friction value of rolled sheet aluminum is up to 11.5×10^-2 and that of profile aluminum is as high as 6.0×10^-2 and 7.5×10^-2 at 300 ℃, respectively. Microstructure analysis shows the shape of precipitation phase of rolled alloy is more regular and the distribution is more homogeneous than that of profile alloy. Meanwhile, the interface between particulate and matrix of rolled sheet alloy is looser than that of profile alloy. Maybe the differences at interface can explain why damping capacity of rolled sheet alloy is higher than that of profile alloys at high temperature (above 120 ℃).展开更多
Engineering point defects such as metal and oxygen vacancies play a crucial role in manipulating the electrical,optical,and catalytic properties of oxide semiconductors for solar water splitting.Herein,we synthesized ...Engineering point defects such as metal and oxygen vacancies play a crucial role in manipulating the electrical,optical,and catalytic properties of oxide semiconductors for solar water splitting.Herein,we synthesized nanoporous CuBi_(2)O_(4)(np-CBO)photocathodes and engineered their surface point defects via rapid thermal processing(RTP)in controlled atmospheres(O_(2),N_(2),and vacuum).We found that the O_(2)-RTP treatment of np-CBO increased the charge carrier density effectively without hampering the nanoporous morphology,which was attributed to the formation of copper vacancies(VCu).Further analyses revealed that the amounts of oxygen vacancies(Vo)and Cu^(1+)were reduced simultaneously,and the relative electrochemical active surface area increased after the O_(2)-RTP treatment.Notably,the point defects(VC_(u),Cu^(1+),and Vo)regulated np-CBO achieved a superb water-splitting photocurrent density of-1.81 m A cm^(-2) under simulated sunlight illumination,which is attributed to the enhanced charge transport and transfer properties resulting from the regulated surface point defects.Finally,the reversibility of the formation of the point defects was checked by sequential RTP treatments(O_(2)-N_(2)-O_(2)-N_(2)),demonstrating the strong dependence of photocurrent response on the RTP cycles.Conclusively,the surface point defect engineering via RTP treatment in a controlled atmosphere is a rapid and facile strategy to promote charge transport and transfer properties of photoelectrodes for efficient solar water-splitting.展开更多
The stoichiometric alloy MlB5.0 and the hypo-stoichiometric alloy MlB4.85 were prepared by twin-roller rapid quenching process, and their structure and electrochemical properties were studied. The results of XRD show ...The stoichiometric alloy MlB5.0 and the hypo-stoichiometric alloy MlB4.85 were prepared by twin-roller rapid quenching process, and their structure and electrochemical properties were studied. The results of XRD show that both of the alloys have a typical single-phase hexagonal CaCus-type structure. The cell volume of the hylpo-stoichiometric alloy M1B4.85 is slightly larger than that of the stoichiometric alloy M1B5.0, although its lattice constant cla is smaller. Under 2 C discharging rate, i.e. 640 mA/g, the M1B4.85 has a discharge capacity of 320 mAh/g, which is higher than that of the M1Bs.o, 312 mAh/g. Nevertheless, the capacities of the M1B4.85 and the M1Bs.o decline 24.7% and 20.2% after 400 cycles, respectively. The relationship of electrochemical performances of the alloys with their structures is discussed.展开更多
The VO2 thin film with high performance of metal-insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical character...The VO2 thin film with high performance of metal-insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical characteristic and THz transmittance of MIT in VO2 film are studied by four-point probe method and THz time domain spectrum (THz-TDS). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and search engine marketing (SEM) are employed to analyze the crystalline structure, valence state, surface morphology of the film. Results indicate that the properties of VO2 film which is oxidized from the metal vanadium film in oxygen atmosphere are improved with a follow- up RTP modification in nitrogen atmosphere. The crystallization and components of VO2 film are improved and the film becomes compact and uniform. A better phase transition performance is shown that the resistance changes nearly 3 orders of magnitude with a 2-~C hysteresis width and the THz transmittances are reduced by 64% and 60% in thermal and optical excitation respectively.展开更多
The effect of refined precipitations and dispersed phases on the toughness of SS400 steel was investigated by rapid tempering with thermomechanical simulation tester, and the electromagnetic induction rapid tempering ...The effect of refined precipitations and dispersed phases on the toughness of SS400 steel was investigated by rapid tempering with thermomechanical simulation tester, and the electromagnetic induction rapid tempering process was simulated. The conventional tempering and rapid tempering process were proceeded respectively, and both samples were quenched in 10~ of agitated iced brine. The tempering temperatures were designed as 560, 620 and 680℃, respectively. Rapid tempering specimens were heated at a heating rate of 20 ℃/s, and all samples of these three tempering temperatures were maintained 30, 40 and 50 s with the Gleeble1500-D tester, respectively. The impact test at --40 ℃ were carried out on a Charpy impact machine (CBD-300) with a maximum measurement range of 300 J and the microstructures were analyzed in detail using optical microscope (OM) and scanning electron microscope (SEM). The experiment results show that the upper bainite, martensite and small amount of austenite were obtained in the rapidly quenched samples. In comparison to the conventional process, the matrix microstructure was changed from the larger size and bulk ferrite to the refined banding structure, and the cementites were obviously refined and precipitated inside the grains and along the grain boundaries. The cryogenic impact test implies that the maximum values of impact toughness with holding time of 30 or 50 s are achieved at tempering temperature of 620℃. Furthermore, a favorite value of impact toughness with holding time of 40 s is available.展开更多
As a deposition technology, gas metal arc welding (GMAW) has shown new promise for rapid prototyping of metallic parts. During the process of metal forming using the arc of GMA W, low heat input and stable droplet t...As a deposition technology, gas metal arc welding (GMAW) has shown new promise for rapid prototyping of metallic parts. During the process of metal forming using the arc of GMA W, low heat input and stable droplet transition are critical to high quality figuration. The effects of various processing parameters on figuration quality were studied in the experiment of GMA W rapid prototyping using the wire of ERSO-6 , including welding voltage, wire feeding rate, welding speed and so on. The optimal parameters for ERSO-6 are obtained. Simultaneously, it is verified that the rapid prototyping parts with favorable structures and quality can be achieved under the conditions of low heat input and stable droplet transition.展开更多
The relationship between the arrangement of tungsten-halogen lamps and the uniformity of irradiance received by the wafer is discussed, and a sort of axial-symmetrical lamps-array is designed to guarantee that the irr...The relationship between the arrangement of tungsten-halogen lamps and the uniformity of irradiance received by the wafer is discussed, and a sort of axial-symmetrical lamps-array is designed to guarantee that the irradiation on the edge is approximately the same as the one on the center of the wafer. The magnitude of temperature on the wafer vs. the power of tungsten-halogen lamps is calculated numerically.展开更多
In order to realize the closed-loop control for rapid prototyping process based on gas metal arc welding, the geometric parameters of weld beads should be detected. In this study, a vision sensor system consisting of ...In order to realize the closed-loop control for rapid prototyping process based on gas metal arc welding, the geometric parameters of weld beads should be detected. In this study, a vision sensor system consisting of a linear laser projector and a CCD camera was designed to collect images of weld beads. Then, an image processing approach which combines with a Gaassian filter and an improved gravity method was used to extract the centerline of a light stripe based on VC ++. Feature points of the centerline were identical directly by means of an image fusion algorithm. Experimental results show that image fusion is an effective approach to measure the width and height of the weld bead with high accuracy. This method can identify beads effectively in multi-pass welding and avoid designing different modes to suit all kinds of shapes.展开更多
Rapidly solidified ribbons of Al90Nd7Ni3 metallic glasses were prepare d by using melt spinning. Crystallization process of the totally amorphous ribbo ns was investigated by differential scanning calorimetry and X-ra...Rapidly solidified ribbons of Al90Nd7Ni3 metallic glasses were prepare d by using melt spinning. Crystallization process of the totally amorphous ribbo ns was investigated by differential scanning calorimetry and X-ray diffraction analysis,under continuous heating regime. The results show that,under continuo us heating regime,the metallic glass devitrifies via two main stages: primary c rystallization,resulting in two-phase mixture of α(Al) plus residual amor phous phase,and secondary crystallization,corresponding to some inter-metalli c phases appearing,successively including Al11Nd3,Al3Ni,and some un known phases,in the Al amorphous/crystal matrix. Four peaks appear on the conti nuous heating DSC curves. Their peak temperatures are respectively 470.8,(570. 8,) (585.6,) and 731.6 K at infinitesimal heating rate,and their activation energies of the respective phase transformation are 183.0,294.7,232.5 and 269.1 kJ/mol. The values of Avrami exponent of the four reactions decrease with increasing relative transformation degree. At the earlier stage of phase trans formation,the values of n are larger than 4,and at the later stage the val ues of n become close to some value from 0.5 to 2.0.展开更多
In the present study, rapidly solidified ribbons of Al87 Ni7Cu3 Nd3 metallic glass was prepared by usingmelt spinning. Devitrification process of the totally amorphous ribbons was investigated by high temperature X-ra...In the present study, rapidly solidified ribbons of Al87 Ni7Cu3 Nd3 metallic glass was prepared by usingmelt spinning. Devitrification process of the totally amorphous ribbons was investigated by high temperature X-raydiffraction analysis, combining with differential scanning calorimetry, under continuous and isothermal heating re-gime. The X-ray diffraction intensity and full width at the half maximum (FWHM) were analyzed to investigate theincrease of crystallized amount and growth of α-Al crystal particles. The results show that under continuous heatingregime, the metallic glass devitrifies via two main stages: primary crystallization, resulting in two-phase mixture ofα-Al plus residual amorphous phase, and secondary crystallization, corresponding to rapid precipitation of some in-ter-metallic phases in the form of dispersion or eutectic mixture. Under isothermal heating regime, only Al crystalprecipitates from the Al-rich amorphous matrix at low temperature, and when heating at 280 ℃ only Al crystal pre-cipitates within a short time, and then Al8 Cu4 Nd forms, followed by Al3 Ni, in the residual amorphous phase. Whenheating at higher temperature or for longer time, Aln Nd3 forms, the amorphous phase disappears, and the ribbonsdevelop into polycrystalline morphologies with multiply phase mixture of a-Al, Al8 Cu4 Nd, Al3 Ni, and Al11 Nd3.展开更多
The paper is to outline a new process for manufacturing rapid graphite electrode. It detailsthe steps in Providing integration with Rapid Prototyping (RP) into rapid electrode abrading Process.The key to this combinat...The paper is to outline a new process for manufacturing rapid graphite electrode. It detailsthe steps in Providing integration with Rapid Prototyping (RP) into rapid electrode abrading Process.The key to this combination is the successful model or patted creating using the RP technology.Significantly reduced lead-time, shortened learns curve, lowered revision changes cost and eliminatedor reduced mold polishing are the consequent results. high quality Electrical Discharge Machining(EDM) electrodes are sometimes difficult to be manufactured rapidly and are very time-consumingby conventional methods, even using Computer Numerical Control (CNC) machines. Abradingprovides a simple way to create etuemely detailed and complex electrode to make molds in toolingmaking industries. Integration with the rapid development of the Rapid Prototyping & Manufacturing(RP&M) technology, the rapid electrode abrading process has been regarded as one of the majorbreakthrough in tooling making technology.展开更多
基金supported by the Major Science and Technology Project of Zhongshan City(No.2022AJ004)the Key Basic and Applied Research Program of Guangdong Province(Nos.2019B030302010 and 2022B1515120082)Guangdong Science and Technology Innovation Project(No.2021TX06C111).
文摘In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.
基金Project (50971012) supported by the National Natural Science Foundation of China
文摘Two kinds of high strength-damping aluminum alloys (LZ7) were fabricated by rapid solidification and powder metallurgy (RS-PM) process. One material was extruded to profile aluminum directly and the other was extruded to bar and then rolled to sheet. The damping capacity over a temperature range of 25-300 ℃was studied with damping mechanical thermal analyzer (DMTA) and the microstructures were investigated by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that the damping capacity increases with the test temperature elevating. Internal friction value of rolled sheet aluminum is up to 11.5×10^-2 and that of profile aluminum is as high as 6.0×10^-2 and 7.5×10^-2 at 300 ℃, respectively. Microstructure analysis shows the shape of precipitation phase of rolled alloy is more regular and the distribution is more homogeneous than that of profile alloy. Meanwhile, the interface between particulate and matrix of rolled sheet alloy is looser than that of profile alloy. Maybe the differences at interface can explain why damping capacity of rolled sheet alloy is higher than that of profile alloys at high temperature (above 120 ℃).
基金supported by the Basic Science Research Program through the National Research Foundation of Korea,funded by the Ministry of Science,ICT,and Future Planning(NRF Award No.NRF-2019R1A2C2002024 and 2021R1A4A1031357)supported by the Basic Science Research Program through NRF funded by the Ministry of Education(NRF Award No.NRF2020R1A6A1A03043435)。
文摘Engineering point defects such as metal and oxygen vacancies play a crucial role in manipulating the electrical,optical,and catalytic properties of oxide semiconductors for solar water splitting.Herein,we synthesized nanoporous CuBi_(2)O_(4)(np-CBO)photocathodes and engineered their surface point defects via rapid thermal processing(RTP)in controlled atmospheres(O_(2),N_(2),and vacuum).We found that the O_(2)-RTP treatment of np-CBO increased the charge carrier density effectively without hampering the nanoporous morphology,which was attributed to the formation of copper vacancies(VCu).Further analyses revealed that the amounts of oxygen vacancies(Vo)and Cu^(1+)were reduced simultaneously,and the relative electrochemical active surface area increased after the O_(2)-RTP treatment.Notably,the point defects(VC_(u),Cu^(1+),and Vo)regulated np-CBO achieved a superb water-splitting photocurrent density of-1.81 m A cm^(-2) under simulated sunlight illumination,which is attributed to the enhanced charge transport and transfer properties resulting from the regulated surface point defects.Finally,the reversibility of the formation of the point defects was checked by sequential RTP treatments(O_(2)-N_(2)-O_(2)-N_(2)),demonstrating the strong dependence of photocurrent response on the RTP cycles.Conclusively,the surface point defect engineering via RTP treatment in a controlled atmosphere is a rapid and facile strategy to promote charge transport and transfer properties of photoelectrodes for efficient solar water-splitting.
基金[This project was supported by the National Natural Science Foundation of China (No. 20373016), the Key Project of In-ternational Science and Technology Cooperation of MOST of China (No. 2005DFA60580), the Key Project of Guangdong Province (No. 2005B50101003), and the Excellent Young Teachers Program of MOE of China.]
文摘The stoichiometric alloy MlB5.0 and the hypo-stoichiometric alloy MlB4.85 were prepared by twin-roller rapid quenching process, and their structure and electrochemical properties were studied. The results of XRD show that both of the alloys have a typical single-phase hexagonal CaCus-type structure. The cell volume of the hylpo-stoichiometric alloy M1B4.85 is slightly larger than that of the stoichiometric alloy M1B5.0, although its lattice constant cla is smaller. Under 2 C discharging rate, i.e. 640 mA/g, the M1B4.85 has a discharge capacity of 320 mAh/g, which is higher than that of the M1Bs.o, 312 mAh/g. Nevertheless, the capacities of the M1B4.85 and the M1Bs.o decline 24.7% and 20.2% after 400 cycles, respectively. The relationship of electrochemical performances of the alloys with their structures is discussed.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61101055)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20100032120029)
文摘The VO2 thin film with high performance of metal-insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical characteristic and THz transmittance of MIT in VO2 film are studied by four-point probe method and THz time domain spectrum (THz-TDS). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and search engine marketing (SEM) are employed to analyze the crystalline structure, valence state, surface morphology of the film. Results indicate that the properties of VO2 film which is oxidized from the metal vanadium film in oxygen atmosphere are improved with a follow- up RTP modification in nitrogen atmosphere. The crystallization and components of VO2 film are improved and the film becomes compact and uniform. A better phase transition performance is shown that the resistance changes nearly 3 orders of magnitude with a 2-~C hysteresis width and the THz transmittances are reduced by 64% and 60% in thermal and optical excitation respectively.
基金Sponsored by Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No.2009MS0811)
文摘The effect of refined precipitations and dispersed phases on the toughness of SS400 steel was investigated by rapid tempering with thermomechanical simulation tester, and the electromagnetic induction rapid tempering process was simulated. The conventional tempering and rapid tempering process were proceeded respectively, and both samples were quenched in 10~ of agitated iced brine. The tempering temperatures were designed as 560, 620 and 680℃, respectively. Rapid tempering specimens were heated at a heating rate of 20 ℃/s, and all samples of these three tempering temperatures were maintained 30, 40 and 50 s with the Gleeble1500-D tester, respectively. The impact test at --40 ℃ were carried out on a Charpy impact machine (CBD-300) with a maximum measurement range of 300 J and the microstructures were analyzed in detail using optical microscope (OM) and scanning electron microscope (SEM). The experiment results show that the upper bainite, martensite and small amount of austenite were obtained in the rapidly quenched samples. In comparison to the conventional process, the matrix microstructure was changed from the larger size and bulk ferrite to the refined banding structure, and the cementites were obviously refined and precipitated inside the grains and along the grain boundaries. The cryogenic impact test implies that the maximum values of impact toughness with holding time of 30 or 50 s are achieved at tempering temperature of 620℃. Furthermore, a favorite value of impact toughness with holding time of 40 s is available.
文摘As a deposition technology, gas metal arc welding (GMAW) has shown new promise for rapid prototyping of metallic parts. During the process of metal forming using the arc of GMA W, low heat input and stable droplet transition are critical to high quality figuration. The effects of various processing parameters on figuration quality were studied in the experiment of GMA W rapid prototyping using the wire of ERSO-6 , including welding voltage, wire feeding rate, welding speed and so on. The optimal parameters for ERSO-6 are obtained. Simultaneously, it is verified that the rapid prototyping parts with favorable structures and quality can be achieved under the conditions of low heat input and stable droplet transition.
基金Foundationfor Key Youth Teachers from Hunan Province(521105237) Natural Science Foundation of HunanUniversity(521101805)
文摘The relationship between the arrangement of tungsten-halogen lamps and the uniformity of irradiance received by the wafer is discussed, and a sort of axial-symmetrical lamps-array is designed to guarantee that the irradiation on the edge is approximately the same as the one on the center of the wafer. The magnitude of temperature on the wafer vs. the power of tungsten-halogen lamps is calculated numerically.
基金This research work is supported by the National Natural Science Foundation of China under Grant No. 51175119.
文摘In order to realize the closed-loop control for rapid prototyping process based on gas metal arc welding, the geometric parameters of weld beads should be detected. In this study, a vision sensor system consisting of a linear laser projector and a CCD camera was designed to collect images of weld beads. Then, an image processing approach which combines with a Gaassian filter and an improved gravity method was used to extract the centerline of a light stripe based on VC ++. Feature points of the centerline were identical directly by means of an image fusion algorithm. Experimental results show that image fusion is an effective approach to measure the width and height of the weld bead with high accuracy. This method can identify beads effectively in multi-pass welding and avoid designing different modes to suit all kinds of shapes.
文摘Rapidly solidified ribbons of Al90Nd7Ni3 metallic glasses were prepare d by using melt spinning. Crystallization process of the totally amorphous ribbo ns was investigated by differential scanning calorimetry and X-ray diffraction analysis,under continuous heating regime. The results show that,under continuo us heating regime,the metallic glass devitrifies via two main stages: primary c rystallization,resulting in two-phase mixture of α(Al) plus residual amor phous phase,and secondary crystallization,corresponding to some inter-metalli c phases appearing,successively including Al11Nd3,Al3Ni,and some un known phases,in the Al amorphous/crystal matrix. Four peaks appear on the conti nuous heating DSC curves. Their peak temperatures are respectively 470.8,(570. 8,) (585.6,) and 731.6 K at infinitesimal heating rate,and their activation energies of the respective phase transformation are 183.0,294.7,232.5 and 269.1 kJ/mol. The values of Avrami exponent of the four reactions decrease with increasing relative transformation degree. At the earlier stage of phase trans formation,the values of n are larger than 4,and at the later stage the val ues of n become close to some value from 0.5 to 2.0.
基金Project (1999SGR-00336) supported by the Comission Interdepartmental de Ciencia i Tecnologia of SpainProject supported by Agencia Espanola de Cooperanion International and China Scholarship Council
文摘In the present study, rapidly solidified ribbons of Al87 Ni7Cu3 Nd3 metallic glass was prepared by usingmelt spinning. Devitrification process of the totally amorphous ribbons was investigated by high temperature X-raydiffraction analysis, combining with differential scanning calorimetry, under continuous and isothermal heating re-gime. The X-ray diffraction intensity and full width at the half maximum (FWHM) were analyzed to investigate theincrease of crystallized amount and growth of α-Al crystal particles. The results show that under continuous heatingregime, the metallic glass devitrifies via two main stages: primary crystallization, resulting in two-phase mixture ofα-Al plus residual amorphous phase, and secondary crystallization, corresponding to rapid precipitation of some in-ter-metallic phases in the form of dispersion or eutectic mixture. Under isothermal heating regime, only Al crystalprecipitates from the Al-rich amorphous matrix at low temperature, and when heating at 280 ℃ only Al crystal pre-cipitates within a short time, and then Al8 Cu4 Nd forms, followed by Al3 Ni, in the residual amorphous phase. Whenheating at higher temperature or for longer time, Aln Nd3 forms, the amorphous phase disappears, and the ribbonsdevelop into polycrystalline morphologies with multiply phase mixture of a-Al, Al8 Cu4 Nd, Al3 Ni, and Al11 Nd3.
文摘The paper is to outline a new process for manufacturing rapid graphite electrode. It detailsthe steps in Providing integration with Rapid Prototyping (RP) into rapid electrode abrading Process.The key to this combination is the successful model or patted creating using the RP technology.Significantly reduced lead-time, shortened learns curve, lowered revision changes cost and eliminatedor reduced mold polishing are the consequent results. high quality Electrical Discharge Machining(EDM) electrodes are sometimes difficult to be manufactured rapidly and are very time-consumingby conventional methods, even using Computer Numerical Control (CNC) machines. Abradingprovides a simple way to create etuemely detailed and complex electrode to make molds in toolingmaking industries. Integration with the rapid development of the Rapid Prototyping & Manufacturing(RP&M) technology, the rapid electrode abrading process has been regarded as one of the majorbreakthrough in tooling making technology.