The leafing rates of fourteen rice varieties were measured in a sowing-time experiment, and a rapid leafing genotype at the vegetative growth stage was discovered in an indica variety Yanhui 559. The leaf number on th...The leafing rates of fourteen rice varieties were measured in a sowing-time experiment, and a rapid leafing genotype at the vegetative growth stage was discovered in an indica variety Yanhui 559. The leaf number on the main culm of Yanhui 559 was always 4-5 leaves more than that of Lemont, and the leafing rate of Yanhui 559 was significantly higher than that of Lemont based on similar growth durations from sowing to heading. Furthermore, the difference of the leafing rate was significant at the vegetative growth stage, but not distinctive at the panicle initiation stage. Genetic analysis of the leafing rates in the two backcross populations of Yanhui 559 and Lemont showed that major and quantitative genes controlled the expression of rapid leafing character. Based on results of investigation for some plants with similar growth durations in the backcrossing populations, the rapid leafing genotypes exhibited earlier tillering and more tiller numbers per plant, and its yield components including the number of panicles per plant and number of grains per panicle were superior to those of the slow leafing genotypes. Further research and application feasibility of the rapid leafing genotype in breeding were discussed.展开更多
Chemical defoliation stands as the ultimate tool in enabling the mechanical harvest of cotton, offering economic and environmental advantages. However, the underlying molecular mechanism that triggers leaf abscission ...Chemical defoliation stands as the ultimate tool in enabling the mechanical harvest of cotton, offering economic and environmental advantages. However, the underlying molecular mechanism that triggers leaf abscission through defoliant remains unsolved. In this study, we meticulously constructed a transcriptomic atlas through single-nucleus mRNA sequencing (snRNA-seq) of the abscission zone (AZ) from cotton petiole. We identified two newly-formed cell types, abscission cells and protection layer cells in cotton petiole AZ after defoliant treatment. GhRLF1 (RAPID LEAF FALLING 1), as one of the members of the cytokinin oxidase/dehydrogenase (CKX) gene family, was further characterized as a key marker gene unique to the abscission cells following defoliant treatment. Overexpression of GhRLF1 resulted in reduced cytokinin accumulation and accelerated leaf abscission. Conversely, CRISPR/Cas9-mediated loss of GhRLF1 function appeared to delay this process. Its interacting regulators, GhWRKY70, acting as “Pioneer” activator, and GhMYB108, acting as “Successor” activator, orchestrate a sequential modulation of GhWRKY70/GhMYB108–GhRLF1–CTK (cytokinin) within the AZ to regulate cotton leaf abscission. GhRLF1 not only regulates leaf abscission but also reduces cotton yield. Consequently, transgenic lines that exhibit rapid leaf falling and require less defoliant but show unaffected cotton yield were developed for mechanical harvesting. This was achieved using a defoliant-induced petiole-specific promoter, proPER21, to drive GhRLF1 (proPER21::RLF1). This pioneering biotechnology offers a new strategy for the chemical defoliation of machine-harvested cotton, ensuring stable production and reducing leaf debris in harvested cotton, thereby enhancing environmental sustainability.展开更多
Leaf senescence plays an important role in crop developmental processes that dramatically affect crop yield and grain quality. The genetic regulation of leaf senescence is complex, involving many metabolic and signali...Leaf senescence plays an important role in crop developmental processes that dramatically affect crop yield and grain quality. The genetic regulation of leaf senescence is complex, involving many metabolic and signaling pathways. Here, we identified a rapid leaf senescence 3 (rls3) mutant that displayed accelerated leaf senescence, shorter plant height and panicle length, and lower seed set rate than the wild type. Map-based cloning revealed that RLS3 encodes a protein with AAA+ domain, localizing it to chloroplasts. Sequence analysis found that the rls3 8ene had a single-nucleotide substitution (G--~A) at the splice site of the Ioth intron/11th exon, resulting in the cleavage of the first nucleotide in 11th exon and premature termination of P, LS3 protein translation. Using transmission electron microscope, the chloroplasts of the rls3 mutant were observed to degrade much faster than those of the wild type. The investigation of the leaf senescence process under dark incubation conditions further revealed that the rls3 mutant displayed rapid leaf senescence. Thus, the RLS3 gene plays key roles in sustaining the normal growth of rice, while loss of function in RLS3 leads to rapid leaf senescence. The identification of RLS3 will be helpful to elucidate the mechanisms involved in leaf senescence in rice.展开更多
文摘The leafing rates of fourteen rice varieties were measured in a sowing-time experiment, and a rapid leafing genotype at the vegetative growth stage was discovered in an indica variety Yanhui 559. The leaf number on the main culm of Yanhui 559 was always 4-5 leaves more than that of Lemont, and the leafing rate of Yanhui 559 was significantly higher than that of Lemont based on similar growth durations from sowing to heading. Furthermore, the difference of the leafing rate was significant at the vegetative growth stage, but not distinctive at the panicle initiation stage. Genetic analysis of the leafing rates in the two backcross populations of Yanhui 559 and Lemont showed that major and quantitative genes controlled the expression of rapid leafing character. Based on results of investigation for some plants with similar growth durations in the backcrossing populations, the rapid leafing genotypes exhibited earlier tillering and more tiller numbers per plant, and its yield components including the number of panicles per plant and number of grains per panicle were superior to those of the slow leafing genotypes. Further research and application feasibility of the rapid leafing genotype in breeding were discussed.
基金supported by funding from the National Key Project of Research and the Development Plan of China(2021YFF1000103)the National Natural Science Foundation of China(32171942)The development fund for Xinjiang talents XL,and the Agricultural GG Project of Xinjiang Production and Construction Corps(NYHXGG,2023AA102).
文摘Chemical defoliation stands as the ultimate tool in enabling the mechanical harvest of cotton, offering economic and environmental advantages. However, the underlying molecular mechanism that triggers leaf abscission through defoliant remains unsolved. In this study, we meticulously constructed a transcriptomic atlas through single-nucleus mRNA sequencing (snRNA-seq) of the abscission zone (AZ) from cotton petiole. We identified two newly-formed cell types, abscission cells and protection layer cells in cotton petiole AZ after defoliant treatment. GhRLF1 (RAPID LEAF FALLING 1), as one of the members of the cytokinin oxidase/dehydrogenase (CKX) gene family, was further characterized as a key marker gene unique to the abscission cells following defoliant treatment. Overexpression of GhRLF1 resulted in reduced cytokinin accumulation and accelerated leaf abscission. Conversely, CRISPR/Cas9-mediated loss of GhRLF1 function appeared to delay this process. Its interacting regulators, GhWRKY70, acting as “Pioneer” activator, and GhMYB108, acting as “Successor” activator, orchestrate a sequential modulation of GhWRKY70/GhMYB108–GhRLF1–CTK (cytokinin) within the AZ to regulate cotton leaf abscission. GhRLF1 not only regulates leaf abscission but also reduces cotton yield. Consequently, transgenic lines that exhibit rapid leaf falling and require less defoliant but show unaffected cotton yield were developed for mechanical harvesting. This was achieved using a defoliant-induced petiole-specific promoter, proPER21, to drive GhRLF1 (proPER21::RLF1). This pioneering biotechnology offers a new strategy for the chemical defoliation of machine-harvested cotton, ensuring stable production and reducing leaf debris in harvested cotton, thereby enhancing environmental sustainability.
文摘Leaf senescence plays an important role in crop developmental processes that dramatically affect crop yield and grain quality. The genetic regulation of leaf senescence is complex, involving many metabolic and signaling pathways. Here, we identified a rapid leaf senescence 3 (rls3) mutant that displayed accelerated leaf senescence, shorter plant height and panicle length, and lower seed set rate than the wild type. Map-based cloning revealed that RLS3 encodes a protein with AAA+ domain, localizing it to chloroplasts. Sequence analysis found that the rls3 8ene had a single-nucleotide substitution (G--~A) at the splice site of the Ioth intron/11th exon, resulting in the cleavage of the first nucleotide in 11th exon and premature termination of P, LS3 protein translation. Using transmission electron microscope, the chloroplasts of the rls3 mutant were observed to degrade much faster than those of the wild type. The investigation of the leaf senescence process under dark incubation conditions further revealed that the rls3 mutant displayed rapid leaf senescence. Thus, the RLS3 gene plays key roles in sustaining the normal growth of rice, while loss of function in RLS3 leads to rapid leaf senescence. The identification of RLS3 will be helpful to elucidate the mechanisms involved in leaf senescence in rice.