期刊文献+
共找到1,125篇文章
< 1 2 57 >
每页显示 20 50 100
Multivariable Dynamic Modeling for Molten Iron Quality Using Incremental Random Vector Functional-link Networks 被引量:4
1
作者 Li ZHANG Ping ZHOU +2 位作者 He-da SONG Meng YUAN Tian-you CHAI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第11期1151-1159,共9页
Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking p... Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking production. However, these MIQ parameters are difficult to be directly measured online, and large-time delay exists in off-line analysis through laboratory sampling. Focusing on the practical challenge, a data-driven modeling method was presented for the prediction of MIQ using the improved muhivariable incremental random vector functional-link net- works (M-I-RVFLNs). Compared with the conventional random vector functional-link networks (RVFLNs) and the online sequential RVFLNs, the M-I-RVFLNs have solved the problem of deciding the optimal number of hidden nodes and overcome the overfitting problems. Moreover, the proposed M I RVFLNs model has exhibited the potential for multivariable prediction of the MIQ and improved the terminal condition for the multiple-input multiple-out- put (MIMO) dynamic system, which is suitable for the BF ironmaking process in practice. Ultimately, industrial experiments and contrastive researches have been conducted on the BF No. 2 in Liuzhou Iron and Steel Group Co. Ltd. of China using the proposed method, and the results demonstrate that the established model produces better estima ting accuracy than other MIQ modeling methods. 展开更多
关键词 molten iron quality multivariable incremental random vector functional-link network blast furnace iron-making data-driven modeling principal component analysis
原文传递
Dispersion of the Mechanical Parts Performance Indicators Based on the Concept of Random Vector 被引量:1
2
作者 XIA Changgao ZHU Pei +2 位作者 ZHANG Meng GAO Xiang LU Liling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期153-159,共7页
To solve the precision and reliability problem of various machinery equipments and military vehicles, some military organisations, the industrial sector and the academia at home and abroad begin to pay attention to th... To solve the precision and reliability problem of various machinery equipments and military vehicles, some military organisations, the industrial sector and the academia at home and abroad begin to pay attention to the statistical distribution of machining dimensions, material properties and service loads, and the system reliability optimization design with constraints and reliability optimization design of various mechanical parts is studied in this way. However, the above researches focus on solving the strength and the life problem, and no studies have been done on the discrete degree and discrete pattern of other performance indicators. The concept of using a random vector to describe the mechanical parts performance indicators is presented; characteristics between the value of the vector variance matrix determinant and the sum of the diagonal covariance matrix in describing the performance indicators of vector dispersion are studied and compared. A clutch diaphragm spring is set as an example, the geometric dimension indicator is described with random vector, and the applicability of using variance matrix determinant and variance matrix trace of geometric dimension vector to describe discrete degree of random vector is studied by using Monte-Carlo simulation method and component discrete degree perturbation method. Also, the effects of different components of diaphragm spring geometric dimension vector on the value of covariance matrix determinant and the sum of covariance matrix diagonal of diaphragm spring performance indicators vector are analyzed. The present study shows that the impacts of the dispersion of diaphragm spring cone angle on every performance dispersion are all ranked first, and far exceed that of other dimension dispersion. So it must be strictly controlled in the production process. The result of the research work provides a reference for the design of diaphragm spring, and also it presents a proper method for researching the performance of other mechanical parts. 展开更多
关键词 diaphragm spring random vector DISPERSION
在线阅读 下载PDF
Underwater Image Classification Based on EfficientnetB0 and Two-Hidden-Layer Random Vector Functional Link
3
作者 ZHOU Zhiyu LIU Mingxuan +2 位作者 JI Haodong WANG Yaming ZHU Zefei 《Journal of Ocean University of China》 CAS CSCD 2024年第2期392-404,共13页
The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a c... The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a classification model that combines an EfficientnetB0 neural network and a two-hidden-layer random vector functional link network(EfficientnetB0-TRVFL).The features of underwater images were extracted using the EfficientnetB0 neural network pretrained via ImageNet,and a new fully connected layer was trained on the underwater image dataset using the transfer learning method.Transfer learning ensures the initial performance of the network and helps in the development of a high-precision classification model.Subsequently,a TRVFL was proposed to improve the classification property of the model.Net construction of the two hidden layers exhibited a high accuracy when the same hidden layer nodes were used.The parameters of the second hidden layer were obtained using a novel calculation method,which reduced the outcome error to improve the performance instability caused by the random generation of parameters of RVFL.Finally,the TRVFL classifier was used to classify features and obtain classification results.The proposed EfficientnetB0-TRVFL classification model achieved 87.28%,74.06%,and 99.59%accuracy on the MLC2008,MLC2009,and Fish-gres datasets,respectively.The best convolutional neural networks and existing methods were stacked up through box plots and Kolmogorov-Smirnov tests,respectively.The increases imply improved systematization properties in underwater image classification tasks.The image classification model offers important performance advantages and better stability compared with existing methods. 展开更多
关键词 underwater image classification EfficientnetB0 random vector functional link convolutional neural network
在线阅读 下载PDF
Fully Distributed Learning for Deep Random Vector Functional-Link Networks
4
作者 Huada Zhu Wu Ai 《Journal of Applied Mathematics and Physics》 2024年第4期1247-1262,共16页
In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations a... In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Distributed Optimization Deep Neural Network random vector Functional-Link (RVFL) Network Alternating Direction Method of Multipliers (ADMM)
在线阅读 下载PDF
The Estimation of Radial Exponential Random Vectors in Additive White Gaussian Noise
5
作者 Pichid KITTISUWAN Sanparith MARUKATAT Widhyakorn ASDORNWISED 《Wireless Sensor Network》 2009年第4期284-292,共9页
Image signals are always disturbed by noise during their transmission, such as in mobile or network communication. The received image quality is significantly influenced by noise. Thus, image signal denoising is an in... Image signals are always disturbed by noise during their transmission, such as in mobile or network communication. The received image quality is significantly influenced by noise. Thus, image signal denoising is an indispensable step during image processing. As we all know, most commonly used methods of image denoising is Bayesian wavelet transform estimators. The Performance of various estimators, such as maximum a posteriori (MAP), or minimum mean square error (MMSE) is strongly dependent on correctness of the proposed model for original data distribution. Therefore, the selection of a proper model for distribution of wavelet coefficients is important in wavelet-based image denoising. This paper presents a new image denoising algorithm based on the modeling of wavelet coefficients in each subband with multivariate Radial Exponential probability density function (PDF) with local variances. Generally these multivariate extensions do not result in a closed form expression, and the solution requires numerical solutions. However, we drive a closed form MMSE shrinkage functions for a Radial Exponential random vectors in additive white Gaussian noise (AWGN). The estimator is motivated and tested on the problem of wavelet-based image denoising. In the last, proposed, the same idea is applied to the dual-tree complex wavelet transform (DT-CWT), This Transform is an over-complete wavelet transform. 展开更多
关键词 MMSE ESTIMATOR RADIAL EXPONENTIAL random vectorS Wavelet Transform Image DENOISING
在线阅读 下载PDF
Law of large numbers for m-dependent random vectors under sublinear expectations
6
作者 Mingcong Wu Guanghui Cheng 《Probability, Uncertainty and Quantitative Risk》 2025年第1期1-12,共12页
Sublinear expectation relaxes the linear property of classical expectation to subadditivity and positive homogeneity,which can be expressed as E(·)=sup_(θ∈θ) E_(θ)(·)for a certain set of linear expectati... Sublinear expectation relaxes the linear property of classical expectation to subadditivity and positive homogeneity,which can be expressed as E(·)=sup_(θ∈θ) E_(θ)(·)for a certain set of linear expectations{E_(θ):θ∈θ}.Such a framework can capture the uncertainty and facilitate a robust method of measuring risk loss reasonably.This study established a law of large numbers for m-dependent random vectors within the framework of sublinear expectation.Consequently,the corresponding explicit rate of convergence were derived.The results of this study can be considered as an extension of the Peng's law of large numbers[22]. 展开更多
关键词 Law of large numbers m-dependence Sublinear expectations Rate of convergence random vectors
原文传递
Some Convergence Properties for Weighted Sums of Martingale Difference Random Vectors
7
作者 Yi WU Xue Jun WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第4期1127-1142,共16页
Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of... Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p-th(1<p<2)moments.Moreover,the complete convergence and strong law of large numbers are established under some mild conditions.An application to multivariate simple linear regression model is also provided. 展开更多
关键词 Martingale difference random vectors weighted sums Marcinkiewicz–Zygmund type weak law of large numbers complete convergence strong law of large numbers multivariate simple linear regression model
原文传递
基于Vector Random Decrement技术和特征系统实现算法ERA的模态参数识别
8
作者 杨陈 孙阳 《世界地震工程》 CSCD 北大核心 2013年第4期102-107,共6页
现代的大型复杂结构,如大坝、高层建筑、桥梁及海洋平台等,处于复杂的环境载荷作用下,这些环境载荷往往是无法测量的。在仅有输出响应时,应用随机减量法RDT获得自由衰减响应信号,而后用时域复指数拟合法、ITD法、特征系统实现算法ERA等... 现代的大型复杂结构,如大坝、高层建筑、桥梁及海洋平台等,处于复杂的环境载荷作用下,这些环境载荷往往是无法测量的。在仅有输出响应时,应用随机减量法RDT获得自由衰减响应信号,而后用时域复指数拟合法、ITD法、特征系统实现算法ERA等算法获得结构的模态参数是一种有效的方法。但在数据量有限时,随机减量函数的平均次数过少,导致RD函数的收敛性较差。为此提出了利用Vector Random Decrement技术(VRDT)提取自由衰减响应信号,而后利用特征系统实现算法ERA求得模态参数的方法,新算法能够有效地提高模态参数识别精度。数值算例验证了所提算法的有效性。 展开更多
关键词 向量随机减量技术 特征系统实现算法 模态分析
在线阅读 下载PDF
ON THE EXPECTATION AND VARIANCE OF HAMMING DISTANCE BETWEEN TWO I.I.D RANDOM VECTORS
9
作者 符方伟 沈世镒 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1997年第3期243-250,共6页
By using the generalized MacWilliams theorem, we give new representations for expectation and variance of Hamming distance between two i.i.d random vectors. By using the new representations, we derive a lower bound fo... By using the generalized MacWilliams theorem, we give new representations for expectation and variance of Hamming distance between two i.i.d random vectors. By using the new representations, we derive a lower bound for the variance, and present a simple and direct proof of the inequality of [1]. 展开更多
关键词 Hamming distance random vector EXPECTATION variance generalized MacWilliams theorem
全文增补中
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:14
10
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification Algorithms NON-PARAMETRIC K-Nearest-Neighbor Neural Networks random Forest Support vector Machines
在线阅读 下载PDF
The Comparison between Random Forest and Support Vector Machine Algorithm for Predicting β-Hairpin Motifs in Proteins
11
作者 Shaochun Jia Xiuzhen Hu Lixia Sun 《Engineering(科研)》 2013年第10期391-395,共5页
Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 ... Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively. 展开更多
关键词 random FOREST ALGORITHM Support vector Machine ALGORITHM β-Hairpin MOTIF INCREMENT of Diversity SCORING Function Predicted Secondary Structure Information
暂未订购
Efficient Global Threshold Vector Outlyingness Ratio Filter for the Removal of Random Valued Impulse Noise
12
作者 J. Amudha R. Sudhakar 《Circuits and Systems》 2016年第6期692-700,共9页
This research paper proposes a filter to remove Random Valued Impulse Noise (RVIN) based on Global Threshold Vector Outlyingness Ratio (GTVOR) that is applicable for real time image processing. This filter works with ... This research paper proposes a filter to remove Random Valued Impulse Noise (RVIN) based on Global Threshold Vector Outlyingness Ratio (GTVOR) that is applicable for real time image processing. This filter works with the algorithm that breaks the images into various decomposition levels using Discrete Wavelet Transform (DWT) and searches for the noisy pixels using the outlyingness of the pixel. This algorithm has the capability of differentiating high frequency pixels and the “noisy pixel” using the threshold as well as window adjustments. The damage and the loss of information are prevented by means of interior mining. This global threshold based algorithm uses different thresholds for different quadrants of DWT and thus helps in recovery of noisy image even if it is 90% affected. Experimental results exhibit that this method outperforms other existing methods for accurate noise detection and removal, at the same time chain of connectivity is not lost. 展开更多
关键词 Image Restoration Noise Detection Noise Removal random Valued Impulse Noise Global Threshold vector Outlyingness Ratio
在线阅读 下载PDF
A RANDOM TRANSPORT-DIFFUSION EQUATION 被引量:1
13
作者 胡耀忠 《Acta Mathematica Scientia》 SCIE CSCD 2010年第6期2033-2050,共18页
In this paper we study the integral curve in a random vector field perturbed by white noise. It is related to a stochastic transport-diffusion equation. Under some conditions on the covariance function of the vector f... In this paper we study the integral curve in a random vector field perturbed by white noise. It is related to a stochastic transport-diffusion equation. Under some conditions on the covariance function of the vector field, the solution of this stochastic partial differential equation is proved to have moments. The exact p-th moment is represented through integrals with respect to Brownian motions. The basic tool is Girsanov formula. 展开更多
关键词 random vector field chaos expansion random transport-diffusion equation TRACE exponential of quadratic functional of Gaussian field
在线阅读 下载PDF
基于改进的Random Subspace 的客户投诉分类方法 被引量:3
14
作者 杨颖 王珺 王刚 《计算机工程与应用》 CSCD 北大核心 2020年第13期230-235,共6页
电信业的客户投诉不断增多而又亟待高效处理。针对电信客户投诉数据的特点,提出了一种面向高维数据的改进的集成学习分类方法。该方法综合考虑客户投诉中的文本信息及客户通讯状态信息,基于Random Subspace方法,以支持向量机(Support Ve... 电信业的客户投诉不断增多而又亟待高效处理。针对电信客户投诉数据的特点,提出了一种面向高维数据的改进的集成学习分类方法。该方法综合考虑客户投诉中的文本信息及客户通讯状态信息,基于Random Subspace方法,以支持向量机(Support Vector Machine,SVM)为基分类器,采用证据推理(Evidential Reasoning,ER)规则为一种新的集成策略,构造分类模型对电信客户投诉进行分类。所提模型和方法在某电信公司客户投诉数据上进行了验证,实验结果显示该方法能够显著提高客户投诉分类的准确率和投诉处理效率。 展开更多
关键词 客户投诉分类 random Subspace方法 支持向量机 证据推理规则
在线阅读 下载PDF
受有色噪声干扰的无人水面船舶系统的机动性控制
15
作者 姜国庆 张会 《鲁东大学学报(自然科学版)》 2026年第1期58-68,共11页
研究了无人水面船舶系统在有色噪声干扰下的机动性控制问题。首先,在二阶矩意义下描述了具有可调设计参数的随机机动性控制目标。其次,采用耦合项噪声分离技术解决了外部噪声扰动的影响,基于向量backstepping技术和滤波梯度更新律设计... 研究了无人水面船舶系统在有色噪声干扰下的机动性控制问题。首先,在二阶矩意义下描述了具有可调设计参数的随机机动性控制目标。其次,采用耦合项噪声分离技术解决了外部噪声扰动的影响,基于向量backstepping技术和滤波梯度更新律设计机动性控制器,使得闭环误差系统是二阶矩噪声到状态稳定的,并且路径跟踪误差和速度分配误差的二阶矩分别收敛到零点附近的邻域内,通过选取独立设计参数使得这些邻域的半径可以调节到任意小。最后,仿真结果验证了所提控制策略的有效性。 展开更多
关键词 无人水面船舶系统 机动性控制 随机干扰 向量backstepping技术
在线阅读 下载PDF
基于机器学习的岩溶裂隙空间分布预测研究:以北京房山为例
16
作者 乔小娟 罗承可 +1 位作者 柴新宇 于文瑾 《地学前缘》 北大核心 2026年第1期405-418,共14页
岩溶裂隙发育具有高维、非线性及空间异质性特征,如何刻画裂隙的空间展布是岩溶发育规律研究的难点。以多源数据驱动的机器学习建模方法可以有效捕捉裂隙系统中隐含的非线性、非连续的特征,从而显著地提高裂隙识别与刻画的效率与精度。... 岩溶裂隙发育具有高维、非线性及空间异质性特征,如何刻画裂隙的空间展布是岩溶发育规律研究的难点。以多源数据驱动的机器学习建模方法可以有效捕捉裂隙系统中隐含的非线性、非连续的特征,从而显著地提高裂隙识别与刻画的效率与精度。本研究以北京市房山张坊地区为研究对象,基于翔实的野外裂隙实测数据,系统融合了地表地形信息、区域构造背景、地层岩性分布以及地下水位等多源数据集。利用机器学习框架构建了一套综合性的定量化特征体系,该体系涵盖了断层空间影响、地层岩性组合特征、地下水埋深变化以及高精度地形衍生属性(如坡度、曲率等)等多个维度的指标。重点研究对比了支持向量回归、极致梯度提升树及随机森林这三种机器学习方法,旨在预测研究区内岩溶裂隙的发育与空间分布情况。结果表明,基于随机森林构建的预测模型表现最为优异。该模型的裂隙密度、节理走向与倾角的模拟结果与实测统计数据最符合,模型表现最为稳健,具有良好的泛化能力和方法适用性,在表达多期次裂隙发育等复杂地质过程方面具有独特优势。本研究的结果揭示,将数据驱动模型与深入的地质机理分析相融合,是突破复杂岩溶系统定量化表征与预测难题的一条有效途径。 展开更多
关键词 岩溶裂隙 机器学习 支持向量回归 梯度提升树 随机森林 北京房山
在线阅读 下载PDF
On Utility Maximization with Random Interval Payoffs 被引量:2
17
作者 YOU Su-rong PENG Yu-zheng ZHAO Fei-fei 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期424-431,共8页
This article discusses the problem of utility maximization in a market with random-interval payoffs without short-selling prohibition. A novel expected utility model is given to measure an investor's subjective vi... This article discusses the problem of utility maximization in a market with random-interval payoffs without short-selling prohibition. A novel expected utility model is given to measure an investor's subjective view toward random interval wealth. Some techniques are proposed to transfer a complex programming involving interval numbers into a simple non-linear programming. Under the existence of the optimal strategy, relations between the optimal strategy and assets' prices are discussed. Some properties of the maximal utility function with respect to the endowment are given. 展开更多
关键词 random interval payoff acceptable state price vector expected utility optimal strategy
在线阅读 下载PDF
Design and realization of threshold secret sharing scheme with random weights
18
作者 Ye Zhenjun Fang Zhenming +1 位作者 Wang Chunfeng Meng Fanzhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1091-1095,共5页
A new threshold secret sharing scheme is constructed by introducing the concept of share vector, in which the number of shareholders can be adjusted by randomly changing the weights of them. This kind of scheme overco... A new threshold secret sharing scheme is constructed by introducing the concept of share vector, in which the number of shareholders can be adjusted by randomly changing the weights of them. This kind of scheme overcomes the limitation of the static weighted secret sharing schemes that cannot change the weights in the process of carrying out and the deficiency of low efficiency of the ordinary dynamic weighted sharing schemes for its resending process. Thus, this scheme is more suitable to the case that the number of shareholders needs to be changed randomly during the scheme is carrying out. 展开更多
关键词 random weight secret sharing share vector.
在线阅读 下载PDF
基于机器学习的30%TBP/煤油-硝酸体系中主要组分的分配比预测研究 被引量:1
19
作者 于婷 张音音 +6 位作者 张睿志 金文蕾 罗应婷 朱升峰 何辉 叶国安 龚禾林 《原子能科学技术》 北大核心 2025年第1期14-23,共10页
为最优化后处理过程的实验条件、优化工艺、降低实验成本和时间,并提高后处理流程数学模拟的准确性,本文基于随机森林、支持向量回归和K近邻这3种经典的机器学习算法建立了30%TBP/煤油-硝酸体系中主要组分铀、钚、硝酸的分配比数学模型... 为最优化后处理过程的实验条件、优化工艺、降低实验成本和时间,并提高后处理流程数学模拟的准确性,本文基于随机森林、支持向量回归和K近邻这3种经典的机器学习算法建立了30%TBP/煤油-硝酸体系中主要组分铀、钚、硝酸的分配比数学模型,并基于不同数据集进行了超参数优化和模型训练。通过对模型进行验证和测试,发现采用随机森林算法建立的分配比模型准确度最高,其对铀预测的平均绝对相对误差达7.73%,较传统方法提高了约7%。与传统建模方法相比,机器学习方法建立模型的准确度更高。 展开更多
关键词 分配比数学模型 随机森林 支持向量回归 K近邻
在线阅读 下载PDF
基于Random Forest与SVM算法的流量识别系统
20
作者 王璐 《数字技术与应用》 2019年第9期117-119,共3页
随着互联网的飞速发展,根据网络流量识别网络业务的类型,逐渐成为网络技术研究的重要课题。本文将SVM和Random Forest算法应用于流量识别系统的机器学习过程中,首先通过Random Forest算法对采集的数据特征信息进行分析选择,提取出在SVM... 随着互联网的飞速发展,根据网络流量识别网络业务的类型,逐渐成为网络技术研究的重要课题。本文将SVM和Random Forest算法应用于流量识别系统的机器学习过程中,首先通过Random Forest算法对采集的数据特征信息进行分析选择,提取出在SVM算法中用来识别流量类型的8个主要特征,进而对数据进行预处理、训练学习,最终完成网络流量的分类识别。通过实验验证,该系统对流量识别准确率达96.7%,对当前的互联网应用的数据流量具有较高的识别准确率。 展开更多
关键词 SVM random FOREST 随机森林 流量识别 支持向量机
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部