The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanc...The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanced data.This limitation results in poor production quality and efficiency,leading to increased production costs.Thus,a novel strip crown prediction model that uses the Boruta and extremely randomized trees(Boruta-ERT)algorithms to address this issue was proposed.To improve the accuracy of our model,we utilized the synthetic minority over-sampling technique to balance the imbalance data sets.The Boruta-ERT prediction model was then used to select features and predict the strip crown.With the 2160 mm hot rolling production lines of a steel plant serving as the research object,the experimental results showed that 97.01% of prediction data have an absolute error of less than 8 lm.This level of accuracy met the control requirements for strip crown and demonstrated significant benefits for the improvement in production quality of steel strip.展开更多
针对基本的快速搜索随机树(rapidly-exploring random tree,RRT)算法用于路径规划时存在的树扩展无导向性、密集障碍物区域规划效率低、局部区域节点聚集等问题,提出一种新的RRT改进算法。该算法采用增强的目标偏向策略,并引入可变的权...针对基本的快速搜索随机树(rapidly-exploring random tree,RRT)算法用于路径规划时存在的树扩展无导向性、密集障碍物区域规划效率低、局部区域节点聚集等问题,提出一种新的RRT改进算法。该算法采用增强的目标偏向策略,并引入可变的权值系数,提高随机树扩展的导向性和灵活性;同时采用局部节点过滤机制,过滤局部区域内聚集的节点;最后,使用节点直连策略对初始路径进行优化处理。仿真实验的结果表明,改进的RRT算法规划路径的速度更快且生成的路径质量更高,充分证明了改进算法的有效可行性。展开更多
针对快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法及其衍生算法路径规划时间长且规划效率低的问题,提出RRT算法与人工势场法结合的PAAPF-RRT机械臂路径规划算法,旨在最短的时间、最小的迭代次数内,在静态环境中找到连接起始...针对快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法及其衍生算法路径规划时间长且规划效率低的问题,提出RRT算法与人工势场法结合的PAAPF-RRT机械臂路径规划算法,旨在最短的时间、最小的迭代次数内,在静态环境中找到连接起始点与终点的最优路径。首先,引入基于地图障碍物分布评估策略和采样区域优化策略,根据地图的障碍物分布、数量调整算法的步长以及偏向概率。然后,伴随随机树的生长,更新随机点的采样区域,保证随机树向目标点生长。其次,将RRT算法与人工势场法结合,当随机树与障碍物发生碰撞时,使用人工势场法引导随机树节点生长避开障碍物,解决了RRT算法随机树生长到障碍物附近且朝目标点生长的方向被障碍物遮挡时随机树无法生长的问题。最后,利用节点修剪策略,把算法生成的初始路径中的冗余节点进行修剪,得到拐点更少、路径更简洁的优化路径。实验结果表明,PAAPF-RRT算法在路径规划时间上对于RRT算法、GB-RRT算法以及RRT*算法分别减少了93.64%、73.58%、93.28%,在迭代次数方面分别下降了91.40%、79.64%、90.58%,在路径长度方面只占其他3种算法的79.34%、86.21%、95.58%。展开更多
针对快速搜索随机树(rapidly-exploring random tree,RRT)算法的随机采样特征导致的收敛速度慢、路径冗余度高、采样点利用率低问题,给出一种新的解决方法。首先,根据图复杂度公式,计算出图的复杂度后确定目标偏执概率,建立偏置概率自...针对快速搜索随机树(rapidly-exploring random tree,RRT)算法的随机采样特征导致的收敛速度慢、路径冗余度高、采样点利用率低问题,给出一种新的解决方法。首先,根据图复杂度公式,计算出图的复杂度后确定目标偏执概率,建立偏置概率自适应模型;其次,在首次规划好路线后,路径中仍存在一些不必要的拐点与棱角,针对传统路径裁剪依赖局部搜索策略,可能导致次优解生成,提出PRM-Dijkstra(probabilistic roadmap-dijkstra)算法对路径进行裁剪,将改进RRT算法生成的树节点利用PRM算法相互连接起来,通过Dijkstra算法计算出一条最优路径;最后,改进RRT算法与PRM-Dijkstra种算法优势相结合,在保证有一条路径的前提下,最大概率的寻找最优路径。通过复杂图下仿真避障实验,结果显示:改进RRT算法在节点生成数量与规划用时相较传统RRT算法平均减少80%,相较于Goal-bias RRT算法均减少40%。并通过机器人操作系统(robot operating system,ROS)下的MoveIt!集成开发平台进行现实环境下避障实验,验证了算法的可行性与有效性。展开更多
面对采摘作业的复杂环境,提出了一种终点区域RRT(Goal Area RRT,GA-RRT)算法,以提高路径生成的效率并降低路径成本。根据环境系数确定初始步长与终点区域,当拓展节点进入终点区域后,随机点生成范围缩小至终点区域,同时调整步长;然后,在...面对采摘作业的复杂环境,提出了一种终点区域RRT(Goal Area RRT,GA-RRT)算法,以提高路径生成的效率并降低路径成本。根据环境系数确定初始步长与终点区域,当拓展节点进入终点区域后,随机点生成范围缩小至终点区域,同时调整步长;然后,在此基础上引入目标概率偏向方法,提高路径搜索效率;最后,对生成的路径进行简化节点处理以减少路径代价,并使用三次B样条方法平滑路径。仿真实验结果表明:二维环境下,GA-RRT算法相较于RRT、RRT-Connect算法,耗时缩短85.15%、29.86%,路径代价减少19.18%、18.26%;机械臂仿真环境下,与引入目标概率偏向方法的RRT算法进行比较,耗时缩短54.70%,路径代价减少51.59°。利用IRB120机械臂实验平台,验证了算法的可行性。展开更多
针对邮轮推舱序列自动规划问题,采用投影法建立推舱路径规划模型,并提出一种基于改进双向快速搜索随机树(Bidirectional Rapidly-Exploring Random Tree,Bi-RRT)算法嵌入的贪心算法进行邮轮推舱序列规划的方法。以大型邮轮H1508船甲板...针对邮轮推舱序列自动规划问题,采用投影法建立推舱路径规划模型,并提出一种基于改进双向快速搜索随机树(Bidirectional Rapidly-Exploring Random Tree,Bi-RRT)算法嵌入的贪心算法进行邮轮推舱序列规划的方法。以大型邮轮H1508船甲板中段区域为例,在Unity3D软件中对预制模块化舱室单元(Pre-fabricated Modular Cabin Unit,PMCU)的推舱序列规划进行仿真试验。试验结果表明,该方法可兼顾避障验证与序列规划,比传统蛇形推舱序列规划具有更高的效率。展开更多
针对六自由度工业机器人在复杂的分拣环境中分拣速度慢、避障效果差等问题,提出了一种融合人工势场(Artificial Potential Field,APF)算法的快速扩展随机树(Rapidly-exploring Random Tree,RRT)改进算法。传统RRT算法路径规划随机性强...针对六自由度工业机器人在复杂的分拣环境中分拣速度慢、避障效果差等问题,提出了一种融合人工势场(Artificial Potential Field,APF)算法的快速扩展随机树(Rapidly-exploring Random Tree,RRT)改进算法。传统RRT算法路径规划随机性强、收敛速度慢,在该算法中引入APF机制引导其向目标点进行有效扩展,减少路径搜索过程中的无效分支,提高搜索效率;优化对父系节点的选择策略,对原路径局部节点进行优化重连,提高路径质量及平滑性。根据实际分拣中可能出现的状况,在MATLAB软件中建立了3个不同的仿真场景,并将所提出的改进APF-RRT算法与传统RRT算法、APF-RRT算法进行对比仿真实验。结果表明,改进APF-RRT算法于不同分拣环境中,在路径长度、搜索时间、节点个数和迭代次数4个指标上均有一定提升,能以更高的效率搜索到更高质量的路径。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52074085,U21A20117 and U21A20475)the Fundamental Research Funds for the Central Universities(Grant No.N2004010)the Liaoning Revitalization Talents Program(XLYC1907065).
文摘The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanced data.This limitation results in poor production quality and efficiency,leading to increased production costs.Thus,a novel strip crown prediction model that uses the Boruta and extremely randomized trees(Boruta-ERT)algorithms to address this issue was proposed.To improve the accuracy of our model,we utilized the synthetic minority over-sampling technique to balance the imbalance data sets.The Boruta-ERT prediction model was then used to select features and predict the strip crown.With the 2160 mm hot rolling production lines of a steel plant serving as the research object,the experimental results showed that 97.01% of prediction data have an absolute error of less than 8 lm.This level of accuracy met the control requirements for strip crown and demonstrated significant benefits for the improvement in production quality of steel strip.
文摘针对基本的快速搜索随机树(rapidly-exploring random tree,RRT)算法用于路径规划时存在的树扩展无导向性、密集障碍物区域规划效率低、局部区域节点聚集等问题,提出一种新的RRT改进算法。该算法采用增强的目标偏向策略,并引入可变的权值系数,提高随机树扩展的导向性和灵活性;同时采用局部节点过滤机制,过滤局部区域内聚集的节点;最后,使用节点直连策略对初始路径进行优化处理。仿真实验的结果表明,改进的RRT算法规划路径的速度更快且生成的路径质量更高,充分证明了改进算法的有效可行性。
文摘针对快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法及其衍生算法路径规划时间长且规划效率低的问题,提出RRT算法与人工势场法结合的PAAPF-RRT机械臂路径规划算法,旨在最短的时间、最小的迭代次数内,在静态环境中找到连接起始点与终点的最优路径。首先,引入基于地图障碍物分布评估策略和采样区域优化策略,根据地图的障碍物分布、数量调整算法的步长以及偏向概率。然后,伴随随机树的生长,更新随机点的采样区域,保证随机树向目标点生长。其次,将RRT算法与人工势场法结合,当随机树与障碍物发生碰撞时,使用人工势场法引导随机树节点生长避开障碍物,解决了RRT算法随机树生长到障碍物附近且朝目标点生长的方向被障碍物遮挡时随机树无法生长的问题。最后,利用节点修剪策略,把算法生成的初始路径中的冗余节点进行修剪,得到拐点更少、路径更简洁的优化路径。实验结果表明,PAAPF-RRT算法在路径规划时间上对于RRT算法、GB-RRT算法以及RRT*算法分别减少了93.64%、73.58%、93.28%,在迭代次数方面分别下降了91.40%、79.64%、90.58%,在路径长度方面只占其他3种算法的79.34%、86.21%、95.58%。
文摘面对采摘作业的复杂环境,提出了一种终点区域RRT(Goal Area RRT,GA-RRT)算法,以提高路径生成的效率并降低路径成本。根据环境系数确定初始步长与终点区域,当拓展节点进入终点区域后,随机点生成范围缩小至终点区域,同时调整步长;然后,在此基础上引入目标概率偏向方法,提高路径搜索效率;最后,对生成的路径进行简化节点处理以减少路径代价,并使用三次B样条方法平滑路径。仿真实验结果表明:二维环境下,GA-RRT算法相较于RRT、RRT-Connect算法,耗时缩短85.15%、29.86%,路径代价减少19.18%、18.26%;机械臂仿真环境下,与引入目标概率偏向方法的RRT算法进行比较,耗时缩短54.70%,路径代价减少51.59°。利用IRB120机械臂实验平台,验证了算法的可行性。
文摘针对六自由度工业机器人在复杂的分拣环境中分拣速度慢、避障效果差等问题,提出了一种融合人工势场(Artificial Potential Field,APF)算法的快速扩展随机树(Rapidly-exploring Random Tree,RRT)改进算法。传统RRT算法路径规划随机性强、收敛速度慢,在该算法中引入APF机制引导其向目标点进行有效扩展,减少路径搜索过程中的无效分支,提高搜索效率;优化对父系节点的选择策略,对原路径局部节点进行优化重连,提高路径质量及平滑性。根据实际分拣中可能出现的状况,在MATLAB软件中建立了3个不同的仿真场景,并将所提出的改进APF-RRT算法与传统RRT算法、APF-RRT算法进行对比仿真实验。结果表明,改进APF-RRT算法于不同分拣环境中,在路径长度、搜索时间、节点个数和迭代次数4个指标上均有一定提升,能以更高的效率搜索到更高质量的路径。