针对当前两阶段的点云目标检测算法PointRCNN:3D object proposal generation and detection from point cloud在点云降采样阶段时间开销大以及低效性的问题,本研究基于PointRCNN网络提出RandLA-RCNN(random sampling and an effectivel...针对当前两阶段的点云目标检测算法PointRCNN:3D object proposal generation and detection from point cloud在点云降采样阶段时间开销大以及低效性的问题,本研究基于PointRCNN网络提出RandLA-RCNN(random sampling and an effectivelocal feature aggregator with region-based convolu-tional neural networks)架构。首先,利用随机采样方法在处理庞大点云数据时的高效性,对大场景点云数据进行下采样;然后,通过对输入点云的每个近邻点的空间位置编码,有效提高从每个点的邻域提取局部特征的能力,并利用基于注意力机制的池化规则聚合局部特征向量,获取全局特征;最后使用由多个局部空间编码单元和注意力池化单元叠加形成的扩展残差模块,来进一步增强每个点的全局特征,避免关键点信息丢失。实验结果表明,该检测算法在保留PointRCNN网络对3D目标的检测优势的同时,相比PointRCNN检测速度提升近两倍,达到16 f/s的推理速度。展开更多
随着影像密集匹配方法的发展,目前可以从多视倾斜航空影像获得大量类比于激光扫描数据密度甚至精度的点云,但获取结果以着色的点云为主,缺乏分类信息。针对此问题,提出了一种面向对象的倾斜摄影测量点云分类方法。首先,计算单点特征向量...随着影像密集匹配方法的发展,目前可以从多视倾斜航空影像获得大量类比于激光扫描数据密度甚至精度的点云,但获取结果以着色的点云为主,缺乏分类信息。针对此问题,提出了一种面向对象的倾斜摄影测量点云分类方法。首先,计算单点特征向量;然后,利用SLIC(simple linear iterative clustering)算法将点云对应的影像分割成超像素,再根据点云和影像间的关系,将点云聚类成超体素对象,并计算每个对象的特征向量;在此基础上,采用随机森林算法对超体素进行分类;最后,根据语义信息对分类结果进行后处理获得最终的点云分类结果。2组典型实验数据结果表明,总体分类精度分别达到91.2%和88.1%,比基于单点的分类方法分别提高了2.3%和8.2%。展开更多
文摘针对当前两阶段的点云目标检测算法PointRCNN:3D object proposal generation and detection from point cloud在点云降采样阶段时间开销大以及低效性的问题,本研究基于PointRCNN网络提出RandLA-RCNN(random sampling and an effectivelocal feature aggregator with region-based convolu-tional neural networks)架构。首先,利用随机采样方法在处理庞大点云数据时的高效性,对大场景点云数据进行下采样;然后,通过对输入点云的每个近邻点的空间位置编码,有效提高从每个点的邻域提取局部特征的能力,并利用基于注意力机制的池化规则聚合局部特征向量,获取全局特征;最后使用由多个局部空间编码单元和注意力池化单元叠加形成的扩展残差模块,来进一步增强每个点的全局特征,避免关键点信息丢失。实验结果表明,该检测算法在保留PointRCNN网络对3D目标的检测优势的同时,相比PointRCNN检测速度提升近两倍,达到16 f/s的推理速度。
文摘随着影像密集匹配方法的发展,目前可以从多视倾斜航空影像获得大量类比于激光扫描数据密度甚至精度的点云,但获取结果以着色的点云为主,缺乏分类信息。针对此问题,提出了一种面向对象的倾斜摄影测量点云分类方法。首先,计算单点特征向量;然后,利用SLIC(simple linear iterative clustering)算法将点云对应的影像分割成超像素,再根据点云和影像间的关系,将点云聚类成超体素对象,并计算每个对象的特征向量;在此基础上,采用随机森林算法对超体素进行分类;最后,根据语义信息对分类结果进行后处理获得最终的点云分类结果。2组典型实验数据结果表明,总体分类精度分别达到91.2%和88.1%,比基于单点的分类方法分别提高了2.3%和8.2%。