Kernel-based slow feature analysis(SFA)methods have been successfully applied in the industrial process fault detection field.However,kernel-based SFA methods have high computational complexity as dealing with nonline...Kernel-based slow feature analysis(SFA)methods have been successfully applied in the industrial process fault detection field.However,kernel-based SFA methods have high computational complexity as dealing with nonlinearity,leading to delays in detecting time-varying data features.Additionally,the uncertain kernel function and kernel parameters limit the ability of the extracted features to express process characteristics,resulting in poor fault detection performance.To alleviate the above problems,a novel randomized auto-regressive dynamic slow feature analysis(RRDSFA)method is proposed to simultaneously monitor the operating point deviations and process dynamic faults,enabling real-time monitoring of data features in industrial processes.Firstly,the proposed Random Fourier mappingbased method achieves more effective nonlinear transformation,contrasting with the current kernelbased RDSFA algorithm that may lead to significant computational complexity.Secondly,a randomized RDSFA model is developed to extract nonlinear dynamic slow features.Furthermore,a Bayesian inference-based overall fault monitoring model including all RRDSFA sub-models is developed to overcome the randomness of random Fourier mapping.Finally,the superiority and effectiveness of the proposed monitoring method are demonstrated through a numerical case and a simulation of continuous stirred tank reactor.展开更多
A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained...A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained are topologically equivalent to each other so the map can preserve the most dynamic properties of chaotic systems such as permutation entropy. Based on the uniform map, a universal algorithm to generate pseudo random numbers is proposed and the pseudo random series is tested to follow the standard 0-1 random distribution both theoretically and experimentally. The algorithm is not complex, which does not impose high requirement on computer hard ware and thus computation speed is fast. The method not only extends the parameter spaces but also avoids the drawback of small function space caused by constraints on chaotic maps used to generate pseudo random numbers. The algorithm can be applied to any chaotic system and can produce pseudo random sequence of high quality, thus can be a good universal pseudo random number generator.展开更多
This paper models the complex simultaneous localization and mapping(SLAM) problem through a very flexible Markov random field and then solves it by using the iterated conditional modes algorithm. Markovian models al...This paper models the complex simultaneous localization and mapping(SLAM) problem through a very flexible Markov random field and then solves it by using the iterated conditional modes algorithm. Markovian models allow to incorporate: any motion model; any observation model regardless of the type of sensor being chosen; prior information of the map through a map model; maps of diverse natures; sensor fusion weighted according to the accuracy. On the other hand, the iterated conditional modes algorithm is a probabilistic optimizer widely used for image processing which has not yet been used to solve the SLAM problem. This iterative solver has theoretical convergence regardless of the Markov random field chosen to model. Its initialization can be performed on-line and improved by parallel iterations whenever deemed appropriate. It can be used as a post-processing methodology if it is initialized with estimates obtained from another SLAM solver. The applied methodology can be easily implemented in other versions of the SLAM problem, such as the multi-robot version or the SLAM with dynamic environment. Simulations and real experiments show the flexibility and the excellent results of this proposal.展开更多
In this research the fault parameters causing the September 27, 2010 Kazeron Earthquake with a magnitude of MW = 5.8 (BHRC) were determined using the random finite fault method. The parameters were recorded by 27 acce...In this research the fault parameters causing the September 27, 2010 Kazeron Earthquake with a magnitude of MW = 5.8 (BHRC) were determined using the random finite fault method. The parameters were recorded by 27 accelerometer stations. Simulation of strong ground motion is very useful for areas about which little information and data are available. Considering the distribution of earthquake records and the existing relationships, for the fault plane causing the September 27, 2010 Kazeron Earthquake the length of the fault along the strike direction and the width of the fault along the dip direction were determined to be 10 km and 7 km, respectively. Moreover, 10 elements were assumed along the length and 7 were assumed along the width of the plane. Research results indicated that the epicenter of the earthquake had a geographic coordination of 29.88N - 51.77E, which complied with the results reported by the Institute of Geophysics Tehran University (IGTU). In addition, the strike and dip measured for the fault causing the Kazeron Earthquake were 27 and 50 degrees, respectively. Therefore, the causing fault was almost parallel to and coincident with the fault. There are magnetic discontinuities on the analytical signal map with a north-south strike followed by a northwest-southeast strike. The discontinuities are consistent with the trend of Kazeron fault but are several kilometers away from it. Therefore, they show the fault depth at a distance of 12 km from the fault surface.展开更多
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de...This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.展开更多
针对快速搜索随机树(rapidly-exploring random tree,RRT)算法的随机采样特征导致的收敛速度慢、路径冗余度高、采样点利用率低问题,给出一种新的解决方法。首先,根据图复杂度公式,计算出图的复杂度后确定目标偏执概率,建立偏置概率自...针对快速搜索随机树(rapidly-exploring random tree,RRT)算法的随机采样特征导致的收敛速度慢、路径冗余度高、采样点利用率低问题,给出一种新的解决方法。首先,根据图复杂度公式,计算出图的复杂度后确定目标偏执概率,建立偏置概率自适应模型;其次,在首次规划好路线后,路径中仍存在一些不必要的拐点与棱角,针对传统路径裁剪依赖局部搜索策略,可能导致次优解生成,提出PRM-Dijkstra(probabilistic roadmap-dijkstra)算法对路径进行裁剪,将改进RRT算法生成的树节点利用PRM算法相互连接起来,通过Dijkstra算法计算出一条最优路径;最后,改进RRT算法与PRM-Dijkstra种算法优势相结合,在保证有一条路径的前提下,最大概率的寻找最优路径。通过复杂图下仿真避障实验,结果显示:改进RRT算法在节点生成数量与规划用时相较传统RRT算法平均减少80%,相较于Goal-bias RRT算法均减少40%。并通过机器人操作系统(robot operating system,ROS)下的MoveIt!集成开发平台进行现实环境下避障实验,验证了算法的可行性与有效性。展开更多
基金supported by the Program of National Natural Science Foundation of China(U23A20329,62163036)Youth Academic and Technical Leaders Reserve Talent Training project(202105AC160094)Industrial Innovation Talent Special Project of Xingdian Talent Support Program(XDYC-CYCX-2022-0010).
文摘Kernel-based slow feature analysis(SFA)methods have been successfully applied in the industrial process fault detection field.However,kernel-based SFA methods have high computational complexity as dealing with nonlinearity,leading to delays in detecting time-varying data features.Additionally,the uncertain kernel function and kernel parameters limit the ability of the extracted features to express process characteristics,resulting in poor fault detection performance.To alleviate the above problems,a novel randomized auto-regressive dynamic slow feature analysis(RRDSFA)method is proposed to simultaneously monitor the operating point deviations and process dynamic faults,enabling real-time monitoring of data features in industrial processes.Firstly,the proposed Random Fourier mappingbased method achieves more effective nonlinear transformation,contrasting with the current kernelbased RDSFA algorithm that may lead to significant computational complexity.Secondly,a randomized RDSFA model is developed to extract nonlinear dynamic slow features.Furthermore,a Bayesian inference-based overall fault monitoring model including all RRDSFA sub-models is developed to overcome the randomness of random Fourier mapping.Finally,the superiority and effectiveness of the proposed monitoring method are demonstrated through a numerical case and a simulation of continuous stirred tank reactor.
基金supported by the National Natural Science Foundation of China (Grant No.10871168)
文摘A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained are topologically equivalent to each other so the map can preserve the most dynamic properties of chaotic systems such as permutation entropy. Based on the uniform map, a universal algorithm to generate pseudo random numbers is proposed and the pseudo random series is tested to follow the standard 0-1 random distribution both theoretically and experimentally. The algorithm is not complex, which does not impose high requirement on computer hard ware and thus computation speed is fast. The method not only extends the parameter spaces but also avoids the drawback of small function space caused by constraints on chaotic maps used to generate pseudo random numbers. The algorithm can be applied to any chaotic system and can produce pseudo random sequence of high quality, thus can be a good universal pseudo random number generator.
基金supported by the National Council for Scientific and Technological Research(CONICET)the National University of San Juan(UNSJ)
文摘This paper models the complex simultaneous localization and mapping(SLAM) problem through a very flexible Markov random field and then solves it by using the iterated conditional modes algorithm. Markovian models allow to incorporate: any motion model; any observation model regardless of the type of sensor being chosen; prior information of the map through a map model; maps of diverse natures; sensor fusion weighted according to the accuracy. On the other hand, the iterated conditional modes algorithm is a probabilistic optimizer widely used for image processing which has not yet been used to solve the SLAM problem. This iterative solver has theoretical convergence regardless of the Markov random field chosen to model. Its initialization can be performed on-line and improved by parallel iterations whenever deemed appropriate. It can be used as a post-processing methodology if it is initialized with estimates obtained from another SLAM solver. The applied methodology can be easily implemented in other versions of the SLAM problem, such as the multi-robot version or the SLAM with dynamic environment. Simulations and real experiments show the flexibility and the excellent results of this proposal.
文摘In this research the fault parameters causing the September 27, 2010 Kazeron Earthquake with a magnitude of MW = 5.8 (BHRC) were determined using the random finite fault method. The parameters were recorded by 27 accelerometer stations. Simulation of strong ground motion is very useful for areas about which little information and data are available. Considering the distribution of earthquake records and the existing relationships, for the fault plane causing the September 27, 2010 Kazeron Earthquake the length of the fault along the strike direction and the width of the fault along the dip direction were determined to be 10 km and 7 km, respectively. Moreover, 10 elements were assumed along the length and 7 were assumed along the width of the plane. Research results indicated that the epicenter of the earthquake had a geographic coordination of 29.88N - 51.77E, which complied with the results reported by the Institute of Geophysics Tehran University (IGTU). In addition, the strike and dip measured for the fault causing the Kazeron Earthquake were 27 and 50 degrees, respectively. Therefore, the causing fault was almost parallel to and coincident with the fault. There are magnetic discontinuities on the analytical signal map with a north-south strike followed by a northwest-southeast strike. The discontinuities are consistent with the trend of Kazeron fault but are several kilometers away from it. Therefore, they show the fault depth at a distance of 12 km from the fault surface.
基金This work was supported in part by the National Natural Science Foundation of China(61601418,41602362,61871259)in part by the Opening Foundation of Hunan Engineering and Research Center of Natural Resource Investigation and Monitoring(2020-5)+1 种基金in part by the Qilian Mountain National Park Research Center(Qinghai)(grant number:GKQ2019-01)in part by the Geomatics Technology and Application Key Laboratory of Qinghai Province,Grant No.QHDX-2019-01.
文摘This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.
文摘目的基于已发表的孟德尔随机化(Mendelian randomization,MR)研究,总结炎症生物标志物与结直肠癌(Colo-rectal cancer,CRC)发病风险之间的因果关系。方法通过计算机检索中国知网、万方、维普、中国生物医学文献数据库、PubMed、Embase和Web of Science,检索时间为建库至2025年2月1日。纳入运用MR方法探讨炎症生物标志物与CRC潜在因果关系的研究。通过评估MR的三个基本假设进行质量评价。采用图表和文字相结合的方式展示综合分析结果。结果最终纳入了10篇文献,共68项研究探讨炎症生物标志物与CRC发病风险之间的关系。其中,50项研究符合MR研究的三大基本假设。CX3C基序趋化因子配体1、白细胞介素(Interleukin,IL)2受体亚基β、IL-6受体亚基α、IL-17F、IL-31、巨噬细胞集落刺激因子和肿瘤坏死因子与CRC发病风险呈负相关;IL-10和IL-12p70与CRC发病风险呈正相关;C反应蛋白、IL-2、IL-7、IL-9、IL-13在不同研究中的结果不一致。结论炎症生物标志物与CRC发病风险之间存在潜在因果关系。