Under suitable conditions on {X-n}, the author obtains the important results: it is almost sure that the random integral function f(w) = Sigma (infinity)(n=0) X(n)z(n) (of finite positive order) has no deficient funct...Under suitable conditions on {X-n}, the author obtains the important results: it is almost sure that the random integral function f(w) = Sigma (infinity)(n=0) X(n)z(n) (of finite positive order) has no deficient function, and any direction is a Borel direction (without finite exceptional value) of f(w).展开更多
文摘Under suitable conditions on {X-n}, the author obtains the important results: it is almost sure that the random integral function f(w) = Sigma (infinity)(n=0) X(n)z(n) (of finite positive order) has no deficient function, and any direction is a Borel direction (without finite exceptional value) of f(w).