This paper presents a low power,truly random number generator (TRNG) based on a simple chaotic map of the Bernoulli shift,which is extended to remain robustness in implementation. The map is realized by switched-cur...This paper presents a low power,truly random number generator (TRNG) based on a simple chaotic map of the Bernoulli shift,which is extended to remain robustness in implementation. The map is realized by switched-current techniques that can fully integrate it in a cryptosystem on a chip. A pipelined architecture post-processed by a simple XOR circuit is used to improve the entropy. The TRNG is fabricated in an HJTC 0.18μm CMOS mixed signal process,and the statistical properties are investigated by measurement results. The power consumption is only 1.42mW and the truly random output bit rate is 10Mbit/s.展开更多
This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an ...This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator, which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.展开更多
The concepts of branching chain in random environmnet and canonical branching chain in random environment are introduced.Moreover the existence of these chains is proved.Finally the exact formulas of mathematical expe...The concepts of branching chain in random environmnet and canonical branching chain in random environment are introduced.Moreover the existence of these chains is proved.Finally the exact formulas of mathematical expectation and variance of branching chain in random environment are also given.展开更多
Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve...Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.展开更多
Random numbers play an increasingly important role in secure wire and wireless communication. Thus the design quality of random number generator(RNG) is significant in information security. A novel pseudo RNG is propo...Random numbers play an increasingly important role in secure wire and wireless communication. Thus the design quality of random number generator(RNG) is significant in information security. A novel pseudo RNG is proposed for improving the security of network communication. The back propagation neural network(BPNN) is nonlinear, which can be used to improve the traditional RNG. The novel pseudo RNG is based on BPNN techniques. The result of test suites standardized by the U.S shows that the RNG can satisfy the security of communication.展开更多
This is a study of one dimensional generalized birth-death chains in a random environment (GBDIRE). We give two sufficient conditions of recurrence for GBDIRE.
The investigation for branching processes has a long history by their strong physics background, but only a few authors have investigated the branching processes in random environments. First of all, the author introd...The investigation for branching processes has a long history by their strong physics background, but only a few authors have investigated the branching processes in random environments. First of all, the author introduces the concepts of the multitype canonical Markov branching chain in random environment (CMBCRE) and multitype Markov branching chain in random environment (MBCRE) and proved that CMBCRE must be MBCRE, and any MBCRE must be equivalent to another CMBCRE in distribution. The main results of this article are the construction of CMBCRE and some of its probability properties.展开更多
Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of nonlinear engineering systems and structures that can be represented by a Volterra series model.In the present...Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of nonlinear engineering systems and structures that can be represented by a Volterra series model.In the present study,the random vibration of nonlinear systems is investigated using Volterra series.Analytical expressions were derived for the calculation of the output power spectral density(PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation.Based on these expressions,it was revealed that both the output PSD and the input-output crossPSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity.Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship.The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model.展开更多
We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotatio...We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of Os to ls varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.展开更多
Superlattices in chaotic state can be used as a key part of a true random number generator. The chaotic characteristics of the signal generated in the superlattice are mostly affected by the parameters of the superlat...Superlattices in chaotic state can be used as a key part of a true random number generator. The chaotic characteristics of the signal generated in the superlattice are mostly affected by the parameters of the superlattice and the applied voltage, while the latter is easier to adjust. In this paper, the model of the superlattice is first established. Then, based on this model, the chaotic characteristics of the generated signal are studied under different voltages. The results demonstrate that the onset of chaos in the superlattice is typically accompanied by the mergence of multistability, and there are voltage intervals in each of which the generated signal is chaotic.展开更多
A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction fr...A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security.展开更多
In real-time applications,unpredictable random numbers play a major role in providing cryptographic and encryption processes.Most of the existing random number generators are embedded with the complex nature of an amp...In real-time applications,unpredictable random numbers play a major role in providing cryptographic and encryption processes.Most of the existing random number generators are embedded with the complex nature of an amplifier,ring oscillators,or comparators.Hence,this research focused more on implementing a Hybrid Nature of a New Random Number Generator.The key objective of the proposed methodology relies on the utilization of True random number generators.The randomness is unpredictable.The additions of programmable delay lines will reduce the processing time and maintain the quality of randomizing.The performance comparisons are carried out with power,delay,and lookup table.The proposed architecture was executed and verified using Xilinx.The Hybrid TRNG is evaluated under simulation and the obtained results outperform the results of the conventional random generators based on Slices,area and Lookup Tables.The experimental observations show that the proposed Hybrid True Random Number Generator(HTRNG)offers high operating speed and low power consumption.展开更多
This paper proposes a well-performing hybrid-type truly quantum random number generator based on the time interval between two independent single-photon detection signals, which is practical and intuitive, and generat...This paper proposes a well-performing hybrid-type truly quantum random number generator based on the time interval between two independent single-photon detection signals, which is practical and intuitive, and generates the initial random number sources from a combination of multiple existing random number sources. A time-to-amplitude converter and multichannel analyzer are used for qualitative analysis to demonstrate that each and every step is random. Furthermore, a carefully designed data acquisition system is used to obtain a high-quality random sequence. Our scheme is simple and proves that the random number bit rate can be dramatically increased to satisfy practical requirements.展开更多
There are three parts in this article. In Section 1, we establish the model of branching chain with drift in space-time random environment (BCDSTRE), i.e., the coupling of branching chain and random walk. In Section...There are three parts in this article. In Section 1, we establish the model of branching chain with drift in space-time random environment (BCDSTRE), i.e., the coupling of branching chain and random walk. In Section 2, we prove that any BCDSTRE must be a Markov chain in time random environment when we consider the distribution of the particles in space as a random element. In Section 3, we calculate the first-order moments and the second-order moments of BCDSTRE.展开更多
In this paper, a strong limit theorem on gambling strategy for binary Bernoulli sequence, (i.e.) irregularity theorem, is extended to random selection for dependent m-valued random variables, via using a new method-di...In this paper, a strong limit theorem on gambling strategy for binary Bernoulli sequence, (i.e.) irregularity theorem, is extended to random selection for dependent m-valued random variables, via using a new method-differentiability on net. Furthermore, by allowing the selection function to take value in finite interval [-M,M], the conception of random selection is generalized.展开更多
With the rapid development of cryptography, the strength of security protocols and encryption algorithms consumedly relies on the quality of random number. In many cryptography applications, higher speed is one of the...With the rapid development of cryptography, the strength of security protocols and encryption algorithms consumedly relies on the quality of random number. In many cryptography applications, higher speed is one of the references required. A new security random number generator architecture is presented. Its philosophy architecture is implemented with FPGA, based on the thermal noise and linear feedback shift register(LFSR). The thermal noise initializes LFSRs and is used as the disturbed source of the system to ensure the unpredictability of the produced random number and improve the security strength of the system. Parallel LFSRs can produce the pseudo-random numbers with long period and higher speed. The proposed architecture can meet the requirements of high quality and high speed in cryptography.展开更多
How to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014)140407] proposed a pre...How to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014)140407] proposed a prepare-and-measure quantum random number generation scenario with device-independent assumption, which indicates a method to test the randomness of bit strings according to the generation process rather than the results. Based on this protocol, we implement a quantum random number generator with an intrinsic stable phase-encoded quantum key distribution system. The system has been continuously running for more than 200 h, a stable witness W with the average value of 0.9752 and a standard deviation of 0.0024 are obtained. More than 1 G random bits are generated and the results pass all items of NIST test suite.展开更多
A new type of superconductive true random number generator (TRNG) based on a negative-inductance superconducting quantum interference device (nSQUID) is proposed. The entropy harnessed to generate random numbers comes...A new type of superconductive true random number generator (TRNG) based on a negative-inductance superconducting quantum interference device (nSQUID) is proposed. The entropy harnessed to generate random numbers comes from the phenomenon of symmetry breaking in the nSQUID. The experimental circuit is fabricated by the Nb-based lift-off process. Low-temperature tests of the circuit verify the basic function of the proposed TRNG. The frequency characteristics of the TRNG have been analyzed by simulation. The generation rate of random numbers is expected to achieve hundreds of megahertz to tens of gigahertz.展开更多
Random numbers generated by pseudo-random and true random number generators (TRNG) are used in a wide variety of important applications. A TRNG relies on a non-deterministic source to sample random numbers. In this pa...Random numbers generated by pseudo-random and true random number generators (TRNG) are used in a wide variety of important applications. A TRNG relies on a non-deterministic source to sample random numbers. In this paper, we improve the post-processing stage of TRNGs using a heuristic evolutionary algorithm. Our post-processing algorithm decomposes the problem of improving the quality of random numbers into two phases: (i) Exact Histogram Equalization: it modifies the random numbers distribution with a specified output distribution;(ii) Stationarity Enforcement: using genetic algorithms, the output of (ii) is permuted until the random numbers meet wide-sense stationarity. We ensure that the quality of the numbers generated from the genetic algorithm is within a specified level of error defined by the user. We parallelize the genetic algorithm for improved performance. The post-processing is based on the power spectral density of the generated numbers used as a metric. We propose guideline parameters for the evolutionary algorithm to ensure fast convergence, within the first 100 generations, with a standard deviation over the specified quality level of less than 0.45. We also include a TestU01 evaluation over the random numbers generated.展开更多
The generalized master equation for the space-time coupled continuous time random walk is derived analytically, in which the space-time coupling is considered through the correlated function 9(t) ~ t^γ, 0 ≤ γ 〈...The generalized master equation for the space-time coupled continuous time random walk is derived analytically, in which the space-time coupling is considered through the correlated function 9(t) ~ t^γ, 0 ≤ γ 〈 2, and the probability density function ω(t) of a particle's waiting time t follows a power law form for large t: ω(t) ~t^-(1+α), 0 〈 α 〈 1. The results indicate that the expressions of the generalized master equation are determined by the correlation exponent 7 and the long-tailed index α of the waiting time. Moreover, the diffusion results obtained from the generalized master equation are in accordance with the previous known results and the numerical simulation results.展开更多
文摘This paper presents a low power,truly random number generator (TRNG) based on a simple chaotic map of the Bernoulli shift,which is extended to remain robustness in implementation. The map is realized by switched-current techniques that can fully integrate it in a cryptosystem on a chip. A pipelined architecture post-processed by a simple XOR circuit is used to improve the entropy. The TRNG is fabricated in an HJTC 0.18μm CMOS mixed signal process,and the statistical properties are investigated by measurement results. The power consumption is only 1.42mW and the truly random output bit rate is 10Mbit/s.
文摘This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator, which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.
基金Supported by NNSF of china(10371092)the Foundation of Wuhan University
文摘The concepts of branching chain in random environmnet and canonical branching chain in random environment are introduced.Moreover the existence of these chains is proved.Finally the exact formulas of mathematical expectation and variance of branching chain in random environment are also given.
基金Supported by the Chinese Academy of Sciences Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics,Shanghai Branch,University of Science and Technology of Chinathe National Natural Science Foundation of China under Grant No 11405172
文摘Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.
基金National Natural Science Foundation of China(60363087 ,90104005 and 60473023)
文摘Random numbers play an increasingly important role in secure wire and wireless communication. Thus the design quality of random number generator(RNG) is significant in information security. A novel pseudo RNG is proposed for improving the security of network communication. The back propagation neural network(BPNN) is nonlinear, which can be used to improve the traditional RNG. The novel pseudo RNG is based on BPNN techniques. The result of test suites standardized by the U.S shows that the RNG can satisfy the security of communication.
文摘This is a study of one dimensional generalized birth-death chains in a random environment (GBDIRE). We give two sufficient conditions of recurrence for GBDIRE.
基金Project supported by the National Natural Science Foundation of China and the Foundation of Wuhan University
文摘The investigation for branching processes has a long history by their strong physics background, but only a few authors have investigated the branching processes in random environments. First of all, the author introduces the concepts of the multitype canonical Markov branching chain in random environment (CMBCRE) and multitype Markov branching chain in random environment (MBCRE) and proved that CMBCRE must be MBCRE, and any MBCRE must be equivalent to another CMBCRE in distribution. The main results of this article are the construction of CMBCRE and some of its probability properties.
基金supported by the National Science Fund for Distinguished Young Scholars (11125209)the National Natural Science Foundation of China (10902068,51121063 and 10702039)+1 种基金the Shanghai Pujiang Program (10PJ1406000)the Opening Project of State Key Laboratory of Mechanical System and Vibration (MSV201103)
文摘Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of nonlinear engineering systems and structures that can be represented by a Volterra series model.In the present study,the random vibration of nonlinear systems is investigated using Volterra series.Analytical expressions were derived for the calculation of the output power spectral density(PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation.Based on these expressions,it was revealed that both the output PSD and the input-output crossPSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity.Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship.The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61378011,U1204616 and 11447143the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant No 2012HASTIT028the Program for Science and Technology Innovation Research Team in University of Henan Province under Grant No 13IRTSTHN020
文摘We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of Os to ls varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.
基金Project supported by the Fund from Xi’an High-tech Institute,China
文摘Superlattices in chaotic state can be used as a key part of a true random number generator. The chaotic characteristics of the signal generated in the superlattice are mostly affected by the parameters of the superlattice and the applied voltage, while the latter is easier to adjust. In this paper, the model of the superlattice is first established. Then, based on this model, the chaotic characteristics of the generated signal are studied under different voltages. The results demonstrate that the onset of chaos in the superlattice is typically accompanied by the mergence of multistability, and there are voltage intervals in each of which the generated signal is chaotic.
文摘A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security.
文摘In real-time applications,unpredictable random numbers play a major role in providing cryptographic and encryption processes.Most of the existing random number generators are embedded with the complex nature of an amplifier,ring oscillators,or comparators.Hence,this research focused more on implementing a Hybrid Nature of a New Random Number Generator.The key objective of the proposed methodology relies on the utilization of True random number generators.The randomness is unpredictable.The additions of programmable delay lines will reduce the processing time and maintain the quality of randomizing.The performance comparisons are carried out with power,delay,and lookup table.The proposed architecture was executed and verified using Xilinx.The Hybrid TRNG is evaluated under simulation and the obtained results outperform the results of the conventional random generators based on Slices,area and Lookup Tables.The experimental observations show that the proposed Hybrid True Random Number Generator(HTRNG)offers high operating speed and low power consumption.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61178010 and 11374042)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),Chinathe Fundamental Research Funds for the Central Universities of China(Grant No.bupt2014TS01)
文摘This paper proposes a well-performing hybrid-type truly quantum random number generator based on the time interval between two independent single-photon detection signals, which is practical and intuitive, and generates the initial random number sources from a combination of multiple existing random number sources. A time-to-amplitude converter and multichannel analyzer are used for qualitative analysis to demonstrate that each and every step is random. Furthermore, a carefully designed data acquisition system is used to obtain a high-quality random sequence. Our scheme is simple and proves that the random number bit rate can be dramatically increased to satisfy practical requirements.
基金Supported by the NSFC(10371092,11771185,10871200)
文摘There are three parts in this article. In Section 1, we establish the model of branching chain with drift in space-time random environment (BCDSTRE), i.e., the coupling of branching chain and random walk. In Section 2, we prove that any BCDSTRE must be a Markov chain in time random environment when we consider the distribution of the particles in space as a random element. In Section 3, we calculate the first-order moments and the second-order moments of BCDSTRE.
文摘In this paper, a strong limit theorem on gambling strategy for binary Bernoulli sequence, (i.e.) irregularity theorem, is extended to random selection for dependent m-valued random variables, via using a new method-differentiability on net. Furthermore, by allowing the selection function to take value in finite interval [-M,M], the conception of random selection is generalized.
基金National Natural Science Foundation of China(60373087 and 90104005) Foundation for Doctoral SpecialBranch by Ministry of Education of China(20020486046)
文摘With the rapid development of cryptography, the strength of security protocols and encryption algorithms consumedly relies on the quality of random number. In many cryptography applications, higher speed is one of the references required. A new security random number generator architecture is presented. Its philosophy architecture is implemented with FPGA, based on the thermal noise and linear feedback shift register(LFSR). The thermal noise initializes LFSRs and is used as the disturbed source of the system to ensure the unpredictability of the produced random number and improve the security strength of the system. Parallel LFSRs can produce the pseudo-random numbers with long period and higher speed. The proposed architecture can meet the requirements of high quality and high speed in cryptography.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CBA00200 and 2011CB921200the National Natural Science Foundation of China under Grant Nos 61201239,61205118,11304397 and 61475148the Strategic Priority Research Program(B) of Chinese Academy of Sciences under Grant Nos XDB01030100 and XDB01030300
文摘How to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014)140407] proposed a prepare-and-measure quantum random number generation scenario with device-independent assumption, which indicates a method to test the randomness of bit strings according to the generation process rather than the results. Based on this protocol, we implement a quantum random number generator with an intrinsic stable phase-encoded quantum key distribution system. The system has been continuously running for more than 200 h, a stable witness W with the average value of 0.9752 and a standard deviation of 0.0024 are obtained. More than 1 G random bits are generated and the results pass all items of NIST test suite.
基金Supported by the State Key Program for Basic Research of China under Grant No 2011CBA00304the National Natural Science Foundation of China under Grant No 60836001the Tsinghua University Initiative Scientific Research Program under Grant No 20131089314
文摘A new type of superconductive true random number generator (TRNG) based on a negative-inductance superconducting quantum interference device (nSQUID) is proposed. The entropy harnessed to generate random numbers comes from the phenomenon of symmetry breaking in the nSQUID. The experimental circuit is fabricated by the Nb-based lift-off process. Low-temperature tests of the circuit verify the basic function of the proposed TRNG. The frequency characteristics of the TRNG have been analyzed by simulation. The generation rate of random numbers is expected to achieve hundreds of megahertz to tens of gigahertz.
文摘Random numbers generated by pseudo-random and true random number generators (TRNG) are used in a wide variety of important applications. A TRNG relies on a non-deterministic source to sample random numbers. In this paper, we improve the post-processing stage of TRNGs using a heuristic evolutionary algorithm. Our post-processing algorithm decomposes the problem of improving the quality of random numbers into two phases: (i) Exact Histogram Equalization: it modifies the random numbers distribution with a specified output distribution;(ii) Stationarity Enforcement: using genetic algorithms, the output of (ii) is permuted until the random numbers meet wide-sense stationarity. We ensure that the quality of the numbers generated from the genetic algorithm is within a specified level of error defined by the user. We parallelize the genetic algorithm for improved performance. The post-processing is based on the power spectral density of the generated numbers used as a metric. We propose guideline parameters for the evolutionary algorithm to ensure fast convergence, within the first 100 generations, with a standard deviation over the specified quality level of less than 0.45. We also include a TestU01 evaluation over the random numbers generated.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11605003 and 11547231
文摘The generalized master equation for the space-time coupled continuous time random walk is derived analytically, in which the space-time coupling is considered through the correlated function 9(t) ~ t^γ, 0 ≤ γ 〈 2, and the probability density function ω(t) of a particle's waiting time t follows a power law form for large t: ω(t) ~t^-(1+α), 0 〈 α 〈 1. The results indicate that the expressions of the generalized master equation are determined by the correlation exponent 7 and the long-tailed index α of the waiting time. Moreover, the diffusion results obtained from the generalized master equation are in accordance with the previous known results and the numerical simulation results.