This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state inf...This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state information with its current neighbors through a time-varying digraph. In addition, the agents do not have access to the information about the current cost functions until decisions are made. Different from most existing works on online distributed optimization, here we consider the case where the cost functions are strongly pseudoconvex and real gradients of the cost functions are not available. To handle this problem, a random gradient-free online distributed algorithm involving the multi-point gradient estimator is proposed. Of particular interest is that under the proposed algorithm, each agent only uses the estimation information of gradients instead of the real gradient information to make decisions. The dynamic regret is employed to measure the proposed algorithm. We prove that if the cumulative deviation of the minimizer sequence grows within a certain rate, then the expectation of dynamic regret increases sublinearly. Finally, a simulation example is given to corroborate the validity of our results.展开更多
In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations a...In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm.展开更多
The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to am...The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.展开更多
The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and t...The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists.展开更多
The random step maneuver with uniformly distributed starting times has the disadvantage that it cannot focus the starting time on the more efficiency time. It decreases the penetration probability. To resolve this pro...The random step maneuver with uniformly distributed starting times has the disadvantage that it cannot focus the starting time on the more efficiency time. It decreases the penetration probability. To resolve this problem, a random step penetration algorithm with normal distribution starting time is proposed. Using the shaping filters and adjoint system method, the miss distance with different starting times can be acquired. According to the penetration standard, the time window ensuring successful penetration can be calculated and it is used as the 3σ bound of the normally distributed random maneuver. Simulation results indicate that the normally distributed random maneuver has higher penetration probability than the uniformly distributed random maneuver.展开更多
This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzz...This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.展开更多
Missiles provide long-range precision strike capabilities and have become a cornerstone of modern warfare.The contrail clouds formed by missile during their active flight phase present significant chal-lenges to high-...Missiles provide long-range precision strike capabilities and have become a cornerstone of modern warfare.The contrail clouds formed by missile during their active flight phase present significant chal-lenges to high-altitude environmental observation and target detection and tracking.Existing studies primarily focus on specific airspace regions,leaving critical gaps in understanding the effects of long dispersion times,wide altitude ranges,and variable atmospheric conditions on missile contrail clouds.To address these gaps,this article develops a numerical method based on the Lagrangian random walk model,which incorporates various velocity variation terms,including particle velocity caused by the difference of wind field,by the thermal motion of local gas molecules and by random collisions between contrail cloud particles to capture the influence of environmental wind fields,atmospheric conditions,and particle concentrations on the motion of contrail cloud particles.A general coordinate system aligned with the missile's flight trajectory is employed to represent particle distribution characteristics.The proposed method is in good agreement with the conducted experiments as well as with the available numerical simulations.The results demonstrate that the proposed model effectively simulates the dispersion state of contrail clouds,accurately reflecting the impact of large-scale wind field variations and altitude changes with high computational efficiency.Additionally,simulation results indicate that the increased distance between gas molecules in rarefied environments facilitates enhanced particle dispersion,while larger particles exhibit a faster dispersion rate due to their greater mass.展开更多
In this paper, we have discussed a random censoring test with incomplete information, and proved that the maximum likelihood estimator(MLE) of the parameter based on the randomly censored data with incomplete informat...In this paper, we have discussed a random censoring test with incomplete information, and proved that the maximum likelihood estimator(MLE) of the parameter based on the randomly censored data with incomplete information in the case of the exponential distribution has the strong consistency.展开更多
This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general he...This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general heading distribution estimation using Markov random fields (DEUM). DEUM is a subclass of estimation of distribution algorithms (EDAs) where interaction between solution variables is represented as an undirected graph and the joint probability of a solution is factorized as a Gibbs distribution derived from the structure of the graph. The focus of this paper will be on describing the three main characteristics of DEUM framework, which distinguishes it from the traditional EDA. They are: 1) use of MRF models, 2) fitness modeling approach to estimating the parameter of the model and 3) Monte Carlo approach to sampling from the model.展开更多
Sliding mode control problem of a class of Ito^ type partial differential equations with delay is probed. The variable structure controller is designed. The existence of motion of sliding mode is shown. And the charac...Sliding mode control problem of a class of Ito^ type partial differential equations with delay is probed. The variable structure controller is designed. The existence of motion of sliding mode is shown. And the character of invariance of sliding control system about uncertainty on the sliding switching surface and stability are analyzed.展开更多
In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state...In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.展开更多
This paper studies the value distribution of random analytic Dirichlet series f(s) = Zn()e-sn, where {Zn} is a sequence of independent random variables, n = 1 with moments zero, such that infE{Zn}/E1/2{Zn2≥ α > ...This paper studies the value distribution of random analytic Dirichlet series f(s) = Zn()e-sn, where {Zn} is a sequence of independent random variables, n = 1 with moments zero, such that infE{Zn}/E1/2{Zn2≥ α > 0. Suppose [h*(σ)]2 = n converges for any α > 0, and diverges for = 0. It is shown that if = ρ E (0, ), then with probability one, where β is a constant depending only upon the constant α.展开更多
In previous papers, the stationary distributions of a class of discrete and continuoustime random graph processes with state space consisting of the simple and directed graphs on Nvenices were studied. In this paper, ...In previous papers, the stationary distributions of a class of discrete and continuoustime random graph processes with state space consisting of the simple and directed graphs on Nvenices were studied. In this paper, the random graph graph process is extended one impotent stepfurther by allowing interaction of edges. Similarly, We obtha the expressions of the stationarydistributions and prove that the process is ergodic under different editions.展开更多
In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size decline.First,by stochastic process rules,the steady stat...In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size decline.First,by stochastic process rules,the steady state transformation equations and steady state degree distribution equations are given in the case of m ≥ 3 and 0 〈 p 〈 1/2,then the average degree of network with n nodes is introduced to calculate the degree distributions.Specifically,taking m = 3 for example,we explain the detailed solving process,in which computer simulation is used to verify our degree distribution solutions.In addition,the tail characteristics of the degree distribution are discussed.Our findings suggest that the degree distributions will exhibit Poisson tail property for the declining RBDN.展开更多
This paper deals with the value distribution of random Dirichlet series whose coefficients are a martingale difference sequence,and which is of neutral growth.
The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random t...The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures.展开更多
In this paper, an importance sampling maximum likelihood(ISML) estimator for direction-of-arrival(DOA) of incoherently distributed(ID) sources is proposed. Starting from the maximum likelihood estimation description o...In this paper, an importance sampling maximum likelihood(ISML) estimator for direction-of-arrival(DOA) of incoherently distributed(ID) sources is proposed. Starting from the maximum likelihood estimation description of the uniform linear array(ULA), a decoupled concentrated likelihood function(CLF) is presented. A new objective function based on CLF which can obtain a closed-form solution of global maximum is constructed according to Pincus theorem. To obtain the optimal value of the objective function which is a complex high-dimensional integral,we propose an importance sampling approach based on Monte Carlo random calculation. Next, an importance function is derived, which can simplify the problem of generating random vector from a high-dimensional probability density function(PDF) to generate random variable from a one-dimensional PDF. Compared with the existing maximum likelihood(ML) algorithms for DOA estimation of ID sources, the proposed algorithm does not require initial estimates, and its performance is closer to CramerRao lower bound(CRLB). The proposed algorithm performs better than the existing methods when the interval between sources to be estimated is small and in low signal to noise ratio(SNR)scenarios.展开更多
The statistical distribution of natural phenomena is of great significance in studying the laws of nature. In order to study the statistical characteristics of a random pulse signal, a random process model is proposed...The statistical distribution of natural phenomena is of great significance in studying the laws of nature. In order to study the statistical characteristics of a random pulse signal, a random process model is proposed theoretically for better studying of the random law of measured results. Moreover, a simple random pulse signal generation and testing system is designed for studying the counting distributions of three typical objects including particles suspended in the air, standard particles, and background noise. Both normal and lognormal distribution fittings are used for analyzing the experimental results and testified by chi-square distribution fit test and correlation coefficient for comparison. In addition, the statistical laws of three typical objects and the relations between them are discussed in detail. The relation is also the non-integral dimension fractal relation of statistical distributions of different random laser scattering pulse signal groups.展开更多
In this paper, without recourse to the nonlinear dynamical equations of the waves, the nonlinear random waves are retrieved from the non-Gaussian characteristic of the sea surface elevation distribution. The question ...In this paper, without recourse to the nonlinear dynamical equations of the waves, the nonlinear random waves are retrieved from the non-Gaussian characteristic of the sea surface elevation distribution. The question of coincidence of the nonlinear wave profile, spectrum and its distributions of maximum (or minimum) values of the sea surface elevation with results derived from some existing nonlinear theories is expounded under the narrow-band spectrum condition. Taking the shoaling sea wave as an example, the nonlinear random wave process and its spectrum in shallow water are retrieved from both the non-Gaussian characteristics of the sea surface elevation distribution in shallow water and the normal sea waves in deep water and compared with the values actually measured. Results show that they can coincide with the actually measured values quite well, thus, this can confirm that the method proposed in this paper is feasible.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62103169,51875380)the China Postdoctoral Science Foundation(No.2021M691313).
文摘This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state information with its current neighbors through a time-varying digraph. In addition, the agents do not have access to the information about the current cost functions until decisions are made. Different from most existing works on online distributed optimization, here we consider the case where the cost functions are strongly pseudoconvex and real gradients of the cost functions are not available. To handle this problem, a random gradient-free online distributed algorithm involving the multi-point gradient estimator is proposed. Of particular interest is that under the proposed algorithm, each agent only uses the estimation information of gradients instead of the real gradient information to make decisions. The dynamic regret is employed to measure the proposed algorithm. We prove that if the cumulative deviation of the minimizer sequence grows within a certain rate, then the expectation of dynamic regret increases sublinearly. Finally, a simulation example is given to corroborate the validity of our results.
文摘In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm.
基金Project(51335003)supported by the National Natural Science Foundation of ChinaProject(20111102110011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.
基金supported by the National Natural Science Foundation of China Youth Fund(12105234)。
文摘The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists.
文摘The random step maneuver with uniformly distributed starting times has the disadvantage that it cannot focus the starting time on the more efficiency time. It decreases the penetration probability. To resolve this problem, a random step penetration algorithm with normal distribution starting time is proposed. Using the shaping filters and adjoint system method, the miss distance with different starting times can be acquired. According to the penetration standard, the time window ensuring successful penetration can be calculated and it is used as the 3σ bound of the normally distributed random maneuver. Simulation results indicate that the normally distributed random maneuver has higher penetration probability than the uniformly distributed random maneuver.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62263005)Guangxi Natural Science Foundation (Grant No. 2020GXNSFDA238029)+2 种基金Laboratory of AI and Information Processing (Hechi University), Education Department of Guangxi Zhuang Autonomous Region (Grant No. 2022GXZDSY004)Innovation Project of Guangxi Graduate Education (Grant No. YCSW2023298)Innovation Project of GUET Graduate Education (Grant Nos. 2022YCXS149 and 2022YCXS155)。
文摘This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.
文摘Missiles provide long-range precision strike capabilities and have become a cornerstone of modern warfare.The contrail clouds formed by missile during their active flight phase present significant chal-lenges to high-altitude environmental observation and target detection and tracking.Existing studies primarily focus on specific airspace regions,leaving critical gaps in understanding the effects of long dispersion times,wide altitude ranges,and variable atmospheric conditions on missile contrail clouds.To address these gaps,this article develops a numerical method based on the Lagrangian random walk model,which incorporates various velocity variation terms,including particle velocity caused by the difference of wind field,by the thermal motion of local gas molecules and by random collisions between contrail cloud particles to capture the influence of environmental wind fields,atmospheric conditions,and particle concentrations on the motion of contrail cloud particles.A general coordinate system aligned with the missile's flight trajectory is employed to represent particle distribution characteristics.The proposed method is in good agreement with the conducted experiments as well as with the available numerical simulations.The results demonstrate that the proposed model effectively simulates the dispersion state of contrail clouds,accurately reflecting the impact of large-scale wind field variations and altitude changes with high computational efficiency.Additionally,simulation results indicate that the increased distance between gas molecules in rarefied environments facilitates enhanced particle dispersion,while larger particles exhibit a faster dispersion rate due to their greater mass.
文摘In this paper, we have discussed a random censoring test with incomplete information, and proved that the maximum likelihood estimator(MLE) of the parameter based on the randomly censored data with incomplete information in the case of the exponential distribution has the strong consistency.
文摘This paper presents a Markov random field (MRP) approach to estimating and sampling the probability distribution in populations of solutions. The approach is used to define a class of algorithms under the general heading distribution estimation using Markov random fields (DEUM). DEUM is a subclass of estimation of distribution algorithms (EDAs) where interaction between solution variables is represented as an undirected graph and the joint probability of a solution is factorized as a Gibbs distribution derived from the structure of the graph. The focus of this paper will be on describing the three main characteristics of DEUM framework, which distinguishes it from the traditional EDA. They are: 1) use of MRF models, 2) fitness modeling approach to estimating the parameter of the model and 3) Monte Carlo approach to sampling from the model.
基金Supported by the national natural science foundation (60574042)
文摘Sliding mode control problem of a class of Ito^ type partial differential equations with delay is probed. The variable structure controller is designed. The existence of motion of sliding mode is shown. And the character of invariance of sliding control system about uncertainty on the sliding switching surface and stability are analyzed.
文摘In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.
基金Project supported by the National Natural Science Foundationof China
文摘This paper studies the value distribution of random analytic Dirichlet series f(s) = Zn()e-sn, where {Zn} is a sequence of independent random variables, n = 1 with moments zero, such that infE{Zn}/E1/2{Zn2≥ α > 0. Suppose [h*(σ)]2 = n converges for any α > 0, and diverges for = 0. It is shown that if = ρ E (0, ), then with probability one, where β is a constant depending only upon the constant α.
文摘In previous papers, the stationary distributions of a class of discrete and continuoustime random graph processes with state space consisting of the simple and directed graphs on Nvenices were studied. In this paper, the random graph graph process is extended one impotent stepfurther by allowing interaction of edges. Similarly, We obtha the expressions of the stationarydistributions and prove that the process is ergodic under different editions.
基金Project supported by the National Natural Science Foundation of China(Grant No.61273015)the Chinese Scholarship Council
文摘In this paper,we provide a general method to obtain the exact solutions of the degree distributions for random birthand-death network(RBDN) with network size decline.First,by stochastic process rules,the steady state transformation equations and steady state degree distribution equations are given in the case of m ≥ 3 and 0 〈 p 〈 1/2,then the average degree of network with n nodes is introduced to calculate the degree distributions.Specifically,taking m = 3 for example,we explain the detailed solving process,in which computer simulation is used to verify our degree distribution solutions.In addition,the tail characteristics of the degree distribution are discussed.Our findings suggest that the degree distributions will exhibit Poisson tail property for the declining RBDN.
基金the National Natural Science Foundation of Chinathe Doctoral Foundation of China.
文摘This paper deals with the value distribution of random Dirichlet series whose coefficients are a martingale difference sequence,and which is of neutral growth.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372156 and 61405053)the Natural Science Foundation of Zhejiang Province of China(Grant No.LZ13F04001)
文摘The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures.
基金supported by the basic research program of Natural Science in Shannxi province of China (2021JQ-369)。
文摘In this paper, an importance sampling maximum likelihood(ISML) estimator for direction-of-arrival(DOA) of incoherently distributed(ID) sources is proposed. Starting from the maximum likelihood estimation description of the uniform linear array(ULA), a decoupled concentrated likelihood function(CLF) is presented. A new objective function based on CLF which can obtain a closed-form solution of global maximum is constructed according to Pincus theorem. To obtain the optimal value of the objective function which is a complex high-dimensional integral,we propose an importance sampling approach based on Monte Carlo random calculation. Next, an importance function is derived, which can simplify the problem of generating random vector from a high-dimensional probability density function(PDF) to generate random variable from a one-dimensional PDF. Compared with the existing maximum likelihood(ML) algorithms for DOA estimation of ID sources, the proposed algorithm does not require initial estimates, and its performance is closer to CramerRao lower bound(CRLB). The proposed algorithm performs better than the existing methods when the interval between sources to be estimated is small and in low signal to noise ratio(SNR)scenarios.
文摘The statistical distribution of natural phenomena is of great significance in studying the laws of nature. In order to study the statistical characteristics of a random pulse signal, a random process model is proposed theoretically for better studying of the random law of measured results. Moreover, a simple random pulse signal generation and testing system is designed for studying the counting distributions of three typical objects including particles suspended in the air, standard particles, and background noise. Both normal and lognormal distribution fittings are used for analyzing the experimental results and testified by chi-square distribution fit test and correlation coefficient for comparison. In addition, the statistical laws of three typical objects and the relations between them are discussed in detail. The relation is also the non-integral dimension fractal relation of statistical distributions of different random laser scattering pulse signal groups.
基金This work is funded by National Natural Science Foundation of China
文摘In this paper, without recourse to the nonlinear dynamical equations of the waves, the nonlinear random waves are retrieved from the non-Gaussian characteristic of the sea surface elevation distribution. The question of coincidence of the nonlinear wave profile, spectrum and its distributions of maximum (or minimum) values of the sea surface elevation with results derived from some existing nonlinear theories is expounded under the narrow-band spectrum condition. Taking the shoaling sea wave as an example, the nonlinear random wave process and its spectrum in shallow water are retrieved from both the non-Gaussian characteristics of the sea surface elevation distribution in shallow water and the normal sea waves in deep water and compared with the values actually measured. Results show that they can coincide with the actually measured values quite well, thus, this can confirm that the method proposed in this paper is feasible.