期刊文献+
共找到2,028篇文章
< 1 2 102 >
每页显示 20 50 100
Robust H_∞ control of piecewise-linear chaotic systems with random data loss
1
作者 张洪斌 于永斌 张健 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期191-199,共9页
This paper studies the problem of robust H∞ control of piecewise-linear chaotic systems with random data loss. The communication links between the plant and the controller are assumed to be imperfect (that is, data ... This paper studies the problem of robust H∞ control of piecewise-linear chaotic systems with random data loss. The communication links between the plant and the controller are assumed to be imperfect (that is, data loss occurs intermittently, which appears typically in a network environment). The data loss is modelled as a random process which obeys a Bernoulli distribution. In the face of random data loss, a piecewise controller is designed to robustly stabilize the networked system in the sense of mean square and also achieve a prescribed H∞ disturbance attenuation performance based on a piecewise-quadratic Lyapunov function. The required H∞ controllers can be designed by solving a set of linear matrix inequalities (LMIs). Chua's system is provided to illustrate the usefulness and applicability of the developed theoretical results. 展开更多
关键词 CHAOS H∞ control piecewise-linear systems piecewise-quadratic Lyapunov functions random data loss
原文传递
Research and Simulation of Mass Random Data Association Rules Based on Fuzzy Cluster Analysis
2
作者 Huaisheng Wu Qin Li and Xiumng Li 《国际计算机前沿大会会议论文集》 2021年第1期80-89,共10页
Because the traditional method is difficult to obtain the internal relationshipand association rules of data when dealingwith massive data, a fuzzy clusteringmethod is proposed to analyze massive data. Firstly, the sa... Because the traditional method is difficult to obtain the internal relationshipand association rules of data when dealingwith massive data, a fuzzy clusteringmethod is proposed to analyze massive data. Firstly, the sample matrix wasnormalized through the normalization of sample data. Secondly, a fuzzy equivalencematrix was constructed by using fuzzy clustering method based on thenormalization matrix, and then the fuzzy equivalence matrix was applied as thebasis for dynamic clustering. Finally, a series of classifications were carried out onthe mass data at the cut-set level successively and a dynamic cluster diagram wasgenerated. The experimental results show that using data fuzzy clustering methodcan effectively identify association rules of data sets by multiple iterations ofmassive data, and the clustering process has short running time and good robustness.Therefore, it can be widely applied to the identification and classification ofassociation rules of massive data such as sound, image and natural resources. 展开更多
关键词 Fuzzy clustering Massive random data Management rules Cut-set levels
原文传递
Fuzzy norm method for evaluating random vibration of airborne platform from limited PSD data 被引量:7
3
作者 Wang Zhongyu Wang Yanqing +1 位作者 Wang Qian Zhang Jianjun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1442-1450,共9页
For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtaine... For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method(FNM) is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%. 展开更多
关键词 Expanded uncertainty Fuzzy norm method Limited PSD data random vibration Reliability Variable interval
原文传递
Mechanical Fault Diagnosis Based on Band-phase-randomized Surrogate Data and Multifractal 被引量:3
4
作者 ZHANG Shuqing ZHAO Yuchun ZHANG Liguo JIN Mei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期885-890,共6页
The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single frac... The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single fractal form,which only reflects the overall irregularity of signals,but cannot describe its local scaling properties.For comprehensive revealing of internal properties,a combinatorial method based on band-phase-randomized(BPR) surrogate data and multifractal is introduced.BPR surrogate data method is effective to eliminate nonlinearity in specified frequency band for a fault signal,which can be utilized to detect nonlinear degree in whole fault signal by nonlinear titration method,and the overall nonlinear distribution of fault signal is displayed in nonlinear characteristic curve that can be used to analyze the fault signal qualitatively.Then multifractal theory as a quantitative analysis method is used to describe geometrical characteristics and local scaling properties,and asymmetry coefficient of multifractal spectrum and multifractal entropy for fault signals are extracted as new criterions to diagnose machinery faults.Several typical faults include rotor misalignment,transversal crack,and static-dynamic rubbing fault are analyzed,and the results indicate that those faults can be distinguished by the proposed method effectively,which provides a qualitative and quantitative analysis way in the field of machinery fault diagnosis. 展开更多
关键词 fault diagnosis band-phase-randomized surrogate data nonlinear titration MULTIFRACTAL
在线阅读 下载PDF
Forest type identification by random forest classification combined with SPOT and multitemporal SAR data 被引量:4
5
作者 Ying Yu Mingze Li Yu Fu 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1407-1414,共8页
We developed a forest type classification technology for the Daxing'an Mountains of northeast China using multisource remote sensing data.A SPOT-5 image and two temporal images of RADARSAT-2 full-polarization SAR wer... We developed a forest type classification technology for the Daxing'an Mountains of northeast China using multisource remote sensing data.A SPOT-5 image and two temporal images of RADARSAT-2 full-polarization SAR were used to identify forest types in the Pangu Forest Farm of the Daxing'an Mountains.Forest types were identified using random forest(RF) classification with the following data combination types: SPOT-5 alone,SPOT-5 and SAR images in August or November,and SPOT-5 and two temporal SAR images.We identified many forest types using a combination of multitemporal SAR and SPOT-5 images,including Betula platyphylla,Larix gmelinii,Pinus sylvestris and Picea koraiensis forests.The accuracy of classification exceeded 88% and improved by 12% when compared to the classification results obtained using SPOT data alone.RF classification using a combination of multisource remote sensing data improved classification accuracy compared to that achieved using single-source remote sensing data. 展开更多
关键词 random forest classification MULTITEMPORAL Multisource remote sensing data Polarization decomposition
在线阅读 下载PDF
THE INFLUENCE OF THE DIFFERENT DISTRIBUTEDPHASE-RANDOMIZED ON THE EXPERIMENTAL DATA OBTAINEd IN DYNAMIC ANALYSIS 被引量:1
6
作者 马军海 陈予恕 刘曾荣 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第11期0-0,0-0+0-0+0-0+0-0,共10页
In this paper the influence of the differently distributed phase-randontized to the data obtained in dynamic analysis for critical value is studied.The calculation results validate that the sufficient phase-randomized... In this paper the influence of the differently distributed phase-randontized to the data obtained in dynamic analysis for critical value is studied.The calculation results validate that the sufficient phase-randomized of the different distributed random numbers are less influential on the critical value . This offers the theoretical foundation of the feasibility and practicality of the phase-randomized method. 展开更多
关键词 experimental data surrogate data critical value phaserandomized random timeseries chaotic timeseries
在线阅读 下载PDF
Automatic Variable Selection for Single-Index Random Effects Models with Longitudinal Data
7
作者 Suigen Yang Liugen Xue 《Open Journal of Statistics》 2014年第3期230-237,共8页
We consider the problem of variable selection for the single-index random effects models with longitudinal data. An automatic variable selection procedure is developed using smooth-threshold. The proposed method share... We consider the problem of variable selection for the single-index random effects models with longitudinal data. An automatic variable selection procedure is developed using smooth-threshold. The proposed method shares some of the desired features of existing variable selection methods: the resulting estimator enjoys the oracle property;the proposed procedure avoids the convex optimization problem and is flexible and easy to implement. Moreover, we use the penalized weighted deviance criterion for a data-driven choice of the tuning parameters. Simulation studies are carried out to assess the performance of our method, and a real dataset is analyzed for further illustration. 展开更多
关键词 VARIABLE SELECTION Single-Index MODEL random Effects Longitudinal data
暂未订购
When cryptography stops data science: strategies for resolving the conflicts between data scientists and cryptographers
8
作者 Banaeian Far Saeed Imani Rad Azadeh 《Data Science and Management》 2024年第3期238-255,共18页
The advent of the digital era and computer-based remote communications has significantly enhanced the applicability of various sciences over the past two decades,notably data science(DS)and cryptography(CG).Data scien... The advent of the digital era and computer-based remote communications has significantly enhanced the applicability of various sciences over the past two decades,notably data science(DS)and cryptography(CG).Data science involves clustering and categorizing unstructured data,while cryptography ensures security and privacy aspects.Despite certain CG laws and requirements mandating fully randomized or pseudonoise outputs from CG primitives and schemes,it appears that CG policies might impede data scientists from working on ciphers or analyzing information systems supporting security and privacy services.However,this study posits that CG does not entirely preclude data scientists from operating in the presence of ciphers,as there are several examples of successful collaborations,including homomorphic encryption schemes,searchable encryption algorithms,secret-sharing protocols,and protocols offering conditional privacy.These instances,along with others,indicate numerous potential solutions for fostering collaboration between DS and CG.Therefore,this study classifies the challenges faced by DS and CG into three distinct groups:challenging problems(which can be conditionally solved and are currently available to use;e.g.,using secret sharing protocols,zero-knowledge proofs,partial homomorphic encryption algorithms,etc.),open problems(where proofs to solve exist but remain unsolved and is now considered as open problems;e.g.,proposing efficient functional encryption algorithm,fully homomorphic encryption scheme,etc.),and hard problems(infeasible to solve with current knowledge and tools).Ultimately,the paper will address specific solutions and outline future directions to tackle the challenges arising at the intersection of DS and CG,such as providing specific access for DS experts in secret-sharing algorithms,assigning data index dimensions to DS experts in ultra-dimension encryption algorithms,defining some functional keys in functional encryption schemes for DS experts,and giving limited shares of data to them for analytics. 展开更多
关键词 Big data data mining Homomorphic calculation randomized data analytic Searchable encryption
在线阅读 下载PDF
基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计 被引量:1
9
作者 申江卫 折亦鑫 +4 位作者 舒星 刘永刚 魏福星 夏雪磊 陈峥 《储能科学与技术》 北大核心 2025年第4期1585-1595,共11页
用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随... 用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随机充电数据,使用单一卷积神经网络架构从中自适应提取老化特征,并采用蜣螂优化算法对其参数寻优,建立了多阶段模型。仅使用短时随机原始充电电压数据即可实现电池健康状态估计,且有效适用于不同充电模式和充电速率。实验测试验证结果表明,使用连续5 s(100个数据点)的原始电压时序数据,在恒流-恒压充电模式下,锂电池健康状态估计结果平均绝对误差小于2.07%,在多阶段恒流充电模式下,锂电池健康状态估计结果平均绝对误差小于1.22%。 展开更多
关键词 健康状态 随机充电 数据分割 卷积神经网络 锂离子电池
在线阅读 下载PDF
Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers
10
作者 赖云锋 陈凡 +3 位作者 曾泽村 林培杰 程树英 俞金玲 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期411-416,共6页
As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabri... As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabricated RRAMs with HfO_x/ZnO double-layer as the storage medium to study their thermal stability as well as data retention. The HfO_x/ZnO double-layer is capable of reversible bipolar switching under ultralow switching current(〈 3 μA) with a Schottky emission dominant conduction for the high resistance state and a Poole–Frenkel emission governed conduction for the low resistance state. Compared with a drastically increased switching current at 120℃ for the single HfO_x layer RRAM, the HfO_x/ZnO double-layer exhibits excellent thermal stability and maintains neglectful fluctuations in switching current at high temperatures(up to 180℃), which might be attributed to the increased Schottky barrier height to suppress current at high temperatures. Additionally, the HfO_x/ZnO double-layer exhibits 10-year data retention @85℃ that is helpful for the practical applications in RRAMs. 展开更多
关键词 resistive random access memory (RRAM) thermal stability data retention double layer
原文传递
基于SMOTE平衡数据的极端随机树岩性识别 被引量:1
11
作者 曹志民 张丽 +1 位作者 郑兵 韩建 《吉林大学学报(地球科学版)》 北大核心 2025年第4期1372-1386,共15页
在油气勘探和地质工程中,精确的岩性识别对于资源评估和开采具有重要意义。由于地质数据的固有复杂性及岩性样本的不平衡问题,传统方法在岩性识别中面临诸多挑战。本文提出一种合成少数类过采样技术(synthetic minority over-sampling t... 在油气勘探和地质工程中,精确的岩性识别对于资源评估和开采具有重要意义。由于地质数据的固有复杂性及岩性样本的不平衡问题,传统方法在岩性识别中面临诸多挑战。本文提出一种合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)结合极端随机树进行岩性识别的方法。首先,通过SMOTE增强少数类样本的表征,提高训练数据的平衡性;其次,利用极端随机树的高效性和强泛化能力构建岩性分类模型。实验结果表明:极端随机树的识别准确率为85.54%,相比其他机器学习方法梯度提升决策树(gradient boosting decision tree,GBDT)、极端梯度提升(extreme gradient boosting,XGBoost)、轻量级梯度提升机(light gradient boosting machine,LightGBM)和随机森林分别提高了5.58%、2.55%、2.35%和2.08%;SMOTE采样后,降低了样本不平衡引起的预测偏差,各模型中少数岩性类别的整体识别精度显著提高,提升了各模型的整体性能,极端随机树性能最优,识别准确率提升到86.62%,相比GBDT、XGBoost、LightGBM和随机森林分别提高了4.71%、2.56%、1.55%和2.02%,验证了SMOTE结合极端随机树的有效性。 展开更多
关键词 岩性识别 机器学习 随机森林 极端随机树 平衡数据
在线阅读 下载PDF
A Data-Driven Car-Following Model Based on the Random Forest
12
作者 Huili Shi Tingli Wang +3 位作者 Fusheng Zhong Hanqing Wang Junyan Han Xiaoyuan Wang 《World Journal of Engineering and Technology》 2021年第3期503-515,共13页
The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare... The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare. In recent years, the related technologies of Intelligent Transportation System (ITS) re</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">presented by the Vehicles to Everything (V2X) technology have been developing rapidly. Utilizing the related technologies of ITS, the large-scale vehicle microscopic trajectory data with high quality can be acquired, which provides the research foundation for modeling the car-following behavior based on the data-driven methods. According to this point, a data-driven car-following model based on the Random Forest (RF) method was constructed in this work, and the Next Generation Simulation (NGSIM) dataset was used to calibrate and train the constructed model. The Artificial Neural Network (ANN) model, GM model, and Full Velocity Difference (FVD) model are em</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">ployed to comparatively verify the proposed model. The research results suggest that the model proposed in this work can accurately describe the car-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">following behavior with better performance under multiple performance indicators. 展开更多
关键词 Traffic Flow Car-Following Model data-Driven Method random Forest Intelligent Transportation System
在线阅读 下载PDF
TESTING FOR VARYING DISPERSION OF LONGITUDINAL BINOMIAL DATA IN NONLINEAR LOGISTIC MODELS WITH RANDOM EFFECTS 被引量:2
13
作者 林金官 韦博成 《Acta Mathematica Scientia》 SCIE CSCD 2004年第4期559-568,共10页
In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. O... In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. One is the individual test and power calculation for varying dispersion through testing the randomness of cluster effects, which is extensions of Dean(1992) and Commenges et al (1994). The second test is the composite test for varying dispersion through simultaneously testing the randomness of cluster effects and the equality of random-effect means. The score test statistics are constructed and expressed in simple, easy to use, matrix formulas. The authors illustrate their test methods using the insecticide data (Giltinan, Capizzi & Malani (1988)). 展开更多
关键词 Longitudinal binomial data logistic regression nonlinear models power calculation random effects score test varying dispersion
在线阅读 下载PDF
基于轻量化网络和多域损失函数的随机噪声衰减方法 被引量:1
14
作者 陈伟 李安禹 +4 位作者 李韵竹 未晛 张庆臣 金彦 魏龙海 《天然气工业》 北大核心 2025年第4期60-69,共10页
随机噪声的存在严重影响了地震数据的质量,对地震解释和反演解析带来了严重干扰,特别是在深层油气勘探过程中有效信号相对较弱的情况下问题更为突出。为了提高地震资料信噪比,设计了具有多尺度特征提取能力的轻量化网络架构,采用并行多... 随机噪声的存在严重影响了地震数据的质量,对地震解释和反演解析带来了严重干扰,特别是在深层油气勘探过程中有效信号相对较弱的情况下问题更为突出。为了提高地震资料信噪比,设计了具有多尺度特征提取能力的轻量化网络架构,采用并行多尺度大核空洞卷积模块捕获跨尺度局部特征,结合通道—空间双注意力机制建立全局特征关联,然后构建时频域联合优化目标函数,通过自适应权重系数平衡时域均方误差与频域能量损失,在去除随机噪声的同时减少有效信号损失,最后利用数据分块训练策略,将大规模地震数据分割为可并行处理的训练样本集,提升模型泛化能力,最终形成了一种联合轻量化网络与多域损失函数来去除地震数据中随机噪声的方法。研究结果表明:①多域损失函数通过优化时域和频域内的损失值,确保了在抑制噪声的同时最大限度地保护原始信号的完整性和局部细节特征,有效提高了资料的信噪比;②与前馈去噪卷积神经网络(DnCNN)相比,提出的方法在参数量(Params)、浮点运算次数(FLOPs)和训练时长方面均有明显改进,将Params减少了约14.29%,FLOPs减少了约15%,并且训练时间缩短了约40.88%;③多尺度平行大核卷积通过并行3种尺度的空洞卷积,实现了跨尺度局部特征的协同提取,可以更好的处理复杂地震数据。结论认为,提出的新方法不仅能够有效去除地震数据中的随机噪声,而且通过优化网络结构实现了更低的计算成本和更快的训练速度,对提高地震勘探效果有着重要的实践意义。 展开更多
关键词 地震资料处理 地震数据去噪 随机噪声 深度学习 多尺度 轻量化
在线阅读 下载PDF
融合相似度与随机森林的数据挖掘算法改进 被引量:1
15
作者 孙宝刚 何国斌 《计算机仿真》 2025年第1期362-366,共5页
为了避免噪声数据干扰数据挖掘效果,提高数据挖掘的精度和质量,提出融合相似度与随机森林的数据挖掘算法。采用奇异值分解算法分解数据矩阵,获得一系列奇异值,同时引入中位数绝对偏差法在上述奇异值中选取较大的奇异值,利用这些奇异值... 为了避免噪声数据干扰数据挖掘效果,提高数据挖掘的精度和质量,提出融合相似度与随机森林的数据挖掘算法。采用奇异值分解算法分解数据矩阵,获得一系列奇异值,同时引入中位数绝对偏差法在上述奇异值中选取较大的奇异值,利用这些奇异值展开重构,得到去噪后的数据;计算去噪后数据的样本熵,将其作为数据特征,结合P值和特征相似度对数据特征展开筛选,剔除冗余特征,选取最优数据特征;建立极限随机森林,将数据特征输入极限随机森林中,实现数据挖掘。实验结果表明,所提算法在数据挖掘过程中具有较高的查全率、F-measure指标以及AUC值,表明所提算法具有良好的数据挖掘性能。 展开更多
关键词 数据相似度 奇异值分解算法 中位数绝对偏差法 极限随机森林 数据挖掘
在线阅读 下载PDF
矿井多人员定位轨迹的预警分类方法研究 被引量:1
16
作者 蔡安江 徐海涛 +1 位作者 程东波 刘锋伟 《金属矿山》 北大核心 2025年第1期243-249,共7页
为解决矿井综采操作区域多人员定位轨迹的预警分类问题,提出了一种基于超宽带(Ultra Wide Band,UWB)的多人员定位轨迹数据的预警分类方法。该方法首先对采集的UWB定位轨迹数据进行预处理;然后利用UWB定位轨迹数据中的人员ID、坐标、时... 为解决矿井综采操作区域多人员定位轨迹的预警分类问题,提出了一种基于超宽带(Ultra Wide Band,UWB)的多人员定位轨迹数据的预警分类方法。该方法首先对采集的UWB定位轨迹数据进行预处理;然后利用UWB定位轨迹数据中的人员ID、坐标、时间、求救信号等特征参数作为UWB人员定位轨迹预警分类模型的输入指标,以人员的预警行为类别作为输出指标,对预警分类模型进行拟合训练,基于人员4级违规预警机制与专家建议设置预警阈值;最后采用随机森林算法对多人员UWB定位轨迹数据进行人员行为预警识别和分类。研究表明:该方法能够对区域人员作业超员、工作超时、作业求救、定位轨迹缺失和作业越界等行为进行有效预警并准确分类,能够消除隐患,提高矿山人员管理效率和生产作业的安全性。 展开更多
关键词 矿井定位 多人员 预警分类 UWB定位轨迹数据 随机森林算法
在线阅读 下载PDF
电网多源断面数据智能监控及自动校核方法研究
17
作者 李豹 黄兆棽 +2 位作者 王子强 袁泉 王巍 《微型电脑应用》 2025年第6期173-177,共5页
随着电网规模逐渐增大,电网断面数据也明显增长,这对电力企业运行方式提出更高的要求。传统的电网断面数据监测方法难以维持电力企业平稳发展,为此,设计一个电网多源断面数据智能操作系统。基于μPMU(power management unit)的精确时间... 随着电网规模逐渐增大,电网断面数据也明显增长,这对电力企业运行方式提出更高的要求。传统的电网断面数据监测方法难以维持电力企业平稳发展,为此,设计一个电网多源断面数据智能操作系统。基于μPMU(power management unit)的精确时间标识,将由数据采集与监控(SCADA)系统、高级量测(AMI)体系和广域测量系统(WAMS)测得的多源断面数据进行数据融合,有效提高电网断面数据的监测效率。另外,结合插点法和随机矩阵理论构建电网多源断面数据自动校核模型,实现对断面数据的实时监控和自动校核,具有较高的精度。经过实验,所设计的方案能够有效实现对电网断面数据的智能监控和自动校核,准确率达到95%。 展开更多
关键词 电网断面数据 随机矩阵理论 SCADA系统 EMS
在线阅读 下载PDF
基于多源遥感数据的城市道路坍塌易发性预测 被引量:2
18
作者 王明常 于海滨 +6 位作者 曾昭发 王典 韩复兴 张剑 罗修杰 冷亮 刘子维 《吉林大学学报(地球科学版)》 北大核心 2025年第3期1028-1038,共11页
城市道路坍塌是严重的城市安全问题,可能导致人员伤亡和交通中断,对城市运行和社会发展构成威胁。准确预测城市道路坍塌并分析其时空动态变化对城市安全具有重要意义。本研究以广东省深圳市福田区为研究区,利用多源遥感数据,结合随机森... 城市道路坍塌是严重的城市安全问题,可能导致人员伤亡和交通中断,对城市运行和社会发展构成威胁。准确预测城市道路坍塌并分析其时空动态变化对城市安全具有重要意义。本研究以广东省深圳市福田区为研究区,利用多源遥感数据,结合随机森林算法构建了一种城市道路坍塌易发性预测模型,并分析影响模型预测性能的关键指标和城市道路坍塌易发性的关键驱动因素。城市道路坍塌易发性时空预测结果表明:结合光学数据和雷达数据构建的城市道路坍塌易发性预测模型能够比较准确地预测道路坍塌易发性的时空变化,预测决定系数为0.65,预测精度较高;2017—2022年,福田区道路坍塌风险整体呈上升趋势,极低易发区和低易发区面积减少,中易发区和高易发区面积增加。随机森林特征重要性分析结果表明,基于影像数据提取的纹理特征对预测模型贡献度较高。根据地理探测器结果可知,人口、GDP和地下设施是影响城市道路坍塌的三个关键驱动因素。 展开更多
关键词 道路坍塌 随机森林 多源遥感数据 时空变化 广东省深圳市福田区
在线阅读 下载PDF
基于多源大数据的防洪保护区当量经济规模快速精准获取方法
19
作者 郑泳 徐张帆 +3 位作者 周晓鑫 蔡季宏 吉红香 秦雁 《人民珠江》 2025年第8期1-12,共12页
当量经济规模是确定城市保护区防洪标准的重要指标,其精度取决于防洪保护区人口和GDP估算值。融合建筑高度、城市POI数据、人口普查等多源大数据,构建人口和GDP随机森林算法模型,形成粤港澳大湾区人口和GDP的百米网格数据集,实现防洪保... 当量经济规模是确定城市保护区防洪标准的重要指标,其精度取决于防洪保护区人口和GDP估算值。融合建筑高度、城市POI数据、人口普查等多源大数据,构建人口和GDP随机森林算法模型,形成粤港澳大湾区人口和GDP的百米网格数据集,实现防洪保护区当量经济规模快速获取。结果显示,人口预测模型的精度达82%,GDP预测模型的精度达76%。与现有的公开人口和GDP数据集对比,百米网格数据集具有更高的空间分辨率,能更好地体现保护区内数据空间分布的细节。该方法为精细化评估提供数据处理范例,可推广用于多种洪灾风险指标精细空间化,提升传统灾害风险评估方法的精度和可靠性。 展开更多
关键词 当量经济规模 防洪保护区 多源大数据 随机森林
在线阅读 下载PDF
基于随机森林和LSTM融合模型的隧道施工通风优化
20
作者 孙三祥 郑旭廷 田维海 《地下空间与工程学报》 北大核心 2025年第S1期470-479,共10页
本研究通过大数据分析和机器学习技术优化高海拔隧道施工中的通风策略,开发了一种高精度预测模型。采用随机森林和长短期记忆网络(LSTM)结合的方法,利用初期掘进阶段收集的环境数据预测远距离掘进时的通风需求和环境变化。在隧道掘进至1... 本研究通过大数据分析和机器学习技术优化高海拔隧道施工中的通风策略,开发了一种高精度预测模型。采用随机森林和长短期记忆网络(LSTM)结合的方法,利用初期掘进阶段收集的环境数据预测远距离掘进时的通风需求和环境变化。在隧道掘进至100 m时,安装高精度传感器实时收集温度、湿度、风速、粉尘及CO浓度等数据,通过无线网络传输至中心数据库进行预处理。模型通过网格搜索和随机搜索优化超参数,并采用10折交叉验证评估性能。结果表明:随机森林和LSTM模型的预测准确率分别达89%和93%,在实际施工中展现出出色的预测能力和实用性;隧道掘进至1 km和2 km时,模型预测值与实测数据高度一致,误差率低于7%;模型能准确预测大规模爆破作业后的污染物浓度变化,确保施工现场空气质量和工人安全;相比传统线性回归和支持向量机模型,随机森林和LSTM融合模型在处理复杂非线性关系和时间序列数据方面表现优异,显著提高了通风系统设计和运行效率,具有广泛的应用前景。 展开更多
关键词 隧道施工通风 大数据分析 随机森林模型 长短期记忆网络 环境数据预测
原文传递
上一页 1 2 102 下一页 到第
使用帮助 返回顶部