This paper studies the problem of robust H∞ control of piecewise-linear chaotic systems with random data loss. The communication links between the plant and the controller are assumed to be imperfect (that is, data ...This paper studies the problem of robust H∞ control of piecewise-linear chaotic systems with random data loss. The communication links between the plant and the controller are assumed to be imperfect (that is, data loss occurs intermittently, which appears typically in a network environment). The data loss is modelled as a random process which obeys a Bernoulli distribution. In the face of random data loss, a piecewise controller is designed to robustly stabilize the networked system in the sense of mean square and also achieve a prescribed H∞ disturbance attenuation performance based on a piecewise-quadratic Lyapunov function. The required H∞ controllers can be designed by solving a set of linear matrix inequalities (LMIs). Chua's system is provided to illustrate the usefulness and applicability of the developed theoretical results.展开更多
Because the traditional method is difficult to obtain the internal relationshipand association rules of data when dealingwith massive data, a fuzzy clusteringmethod is proposed to analyze massive data. Firstly, the sa...Because the traditional method is difficult to obtain the internal relationshipand association rules of data when dealingwith massive data, a fuzzy clusteringmethod is proposed to analyze massive data. Firstly, the sample matrix wasnormalized through the normalization of sample data. Secondly, a fuzzy equivalencematrix was constructed by using fuzzy clustering method based on thenormalization matrix, and then the fuzzy equivalence matrix was applied as thebasis for dynamic clustering. Finally, a series of classifications were carried out onthe mass data at the cut-set level successively and a dynamic cluster diagram wasgenerated. The experimental results show that using data fuzzy clustering methodcan effectively identify association rules of data sets by multiple iterations ofmassive data, and the clustering process has short running time and good robustness.Therefore, it can be widely applied to the identification and classification ofassociation rules of massive data such as sound, image and natural resources.展开更多
For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtaine...For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method(FNM) is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%.展开更多
The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single frac...The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single fractal form,which only reflects the overall irregularity of signals,but cannot describe its local scaling properties.For comprehensive revealing of internal properties,a combinatorial method based on band-phase-randomized(BPR) surrogate data and multifractal is introduced.BPR surrogate data method is effective to eliminate nonlinearity in specified frequency band for a fault signal,which can be utilized to detect nonlinear degree in whole fault signal by nonlinear titration method,and the overall nonlinear distribution of fault signal is displayed in nonlinear characteristic curve that can be used to analyze the fault signal qualitatively.Then multifractal theory as a quantitative analysis method is used to describe geometrical characteristics and local scaling properties,and asymmetry coefficient of multifractal spectrum and multifractal entropy for fault signals are extracted as new criterions to diagnose machinery faults.Several typical faults include rotor misalignment,transversal crack,and static-dynamic rubbing fault are analyzed,and the results indicate that those faults can be distinguished by the proposed method effectively,which provides a qualitative and quantitative analysis way in the field of machinery fault diagnosis.展开更多
We developed a forest type classification technology for the Daxing'an Mountains of northeast China using multisource remote sensing data.A SPOT-5 image and two temporal images of RADARSAT-2 full-polarization SAR wer...We developed a forest type classification technology for the Daxing'an Mountains of northeast China using multisource remote sensing data.A SPOT-5 image and two temporal images of RADARSAT-2 full-polarization SAR were used to identify forest types in the Pangu Forest Farm of the Daxing'an Mountains.Forest types were identified using random forest(RF) classification with the following data combination types: SPOT-5 alone,SPOT-5 and SAR images in August or November,and SPOT-5 and two temporal SAR images.We identified many forest types using a combination of multitemporal SAR and SPOT-5 images,including Betula platyphylla,Larix gmelinii,Pinus sylvestris and Picea koraiensis forests.The accuracy of classification exceeded 88% and improved by 12% when compared to the classification results obtained using SPOT data alone.RF classification using a combination of multisource remote sensing data improved classification accuracy compared to that achieved using single-source remote sensing data.展开更多
In this paper the influence of the differently distributed phase-randontized to the data obtained in dynamic analysis for critical value is studied.The calculation results validate that the sufficient phase-randomized...In this paper the influence of the differently distributed phase-randontized to the data obtained in dynamic analysis for critical value is studied.The calculation results validate that the sufficient phase-randomized of the different distributed random numbers are less influential on the critical value . This offers the theoretical foundation of the feasibility and practicality of the phase-randomized method.展开更多
We consider the problem of variable selection for the single-index random effects models with longitudinal data. An automatic variable selection procedure is developed using smooth-threshold. The proposed method share...We consider the problem of variable selection for the single-index random effects models with longitudinal data. An automatic variable selection procedure is developed using smooth-threshold. The proposed method shares some of the desired features of existing variable selection methods: the resulting estimator enjoys the oracle property;the proposed procedure avoids the convex optimization problem and is flexible and easy to implement. Moreover, we use the penalized weighted deviance criterion for a data-driven choice of the tuning parameters. Simulation studies are carried out to assess the performance of our method, and a real dataset is analyzed for further illustration.展开更多
The advent of the digital era and computer-based remote communications has significantly enhanced the applicability of various sciences over the past two decades,notably data science(DS)and cryptography(CG).Data scien...The advent of the digital era and computer-based remote communications has significantly enhanced the applicability of various sciences over the past two decades,notably data science(DS)and cryptography(CG).Data science involves clustering and categorizing unstructured data,while cryptography ensures security and privacy aspects.Despite certain CG laws and requirements mandating fully randomized or pseudonoise outputs from CG primitives and schemes,it appears that CG policies might impede data scientists from working on ciphers or analyzing information systems supporting security and privacy services.However,this study posits that CG does not entirely preclude data scientists from operating in the presence of ciphers,as there are several examples of successful collaborations,including homomorphic encryption schemes,searchable encryption algorithms,secret-sharing protocols,and protocols offering conditional privacy.These instances,along with others,indicate numerous potential solutions for fostering collaboration between DS and CG.Therefore,this study classifies the challenges faced by DS and CG into three distinct groups:challenging problems(which can be conditionally solved and are currently available to use;e.g.,using secret sharing protocols,zero-knowledge proofs,partial homomorphic encryption algorithms,etc.),open problems(where proofs to solve exist but remain unsolved and is now considered as open problems;e.g.,proposing efficient functional encryption algorithm,fully homomorphic encryption scheme,etc.),and hard problems(infeasible to solve with current knowledge and tools).Ultimately,the paper will address specific solutions and outline future directions to tackle the challenges arising at the intersection of DS and CG,such as providing specific access for DS experts in secret-sharing algorithms,assigning data index dimensions to DS experts in ultra-dimension encryption algorithms,defining some functional keys in functional encryption schemes for DS experts,and giving limited shares of data to them for analytics.展开更多
As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabri...As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabricated RRAMs with HfO_x/ZnO double-layer as the storage medium to study their thermal stability as well as data retention. The HfO_x/ZnO double-layer is capable of reversible bipolar switching under ultralow switching current(〈 3 μA) with a Schottky emission dominant conduction for the high resistance state and a Poole–Frenkel emission governed conduction for the low resistance state. Compared with a drastically increased switching current at 120℃ for the single HfO_x layer RRAM, the HfO_x/ZnO double-layer exhibits excellent thermal stability and maintains neglectful fluctuations in switching current at high temperatures(up to 180℃), which might be attributed to the increased Schottky barrier height to suppress current at high temperatures. Additionally, the HfO_x/ZnO double-layer exhibits 10-year data retention @85℃ that is helpful for the practical applications in RRAMs.展开更多
The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare...The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare. In recent years, the related technologies of Intelligent Transportation System (ITS) re</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">presented by the Vehicles to Everything (V2X) technology have been developing rapidly. Utilizing the related technologies of ITS, the large-scale vehicle microscopic trajectory data with high quality can be acquired, which provides the research foundation for modeling the car-following behavior based on the data-driven methods. According to this point, a data-driven car-following model based on the Random Forest (RF) method was constructed in this work, and the Next Generation Simulation (NGSIM) dataset was used to calibrate and train the constructed model. The Artificial Neural Network (ANN) model, GM model, and Full Velocity Difference (FVD) model are em</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">ployed to comparatively verify the proposed model. The research results suggest that the model proposed in this work can accurately describe the car-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">following behavior with better performance under multiple performance indicators.展开更多
In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. O...In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. One is the individual test and power calculation for varying dispersion through testing the randomness of cluster effects, which is extensions of Dean(1992) and Commenges et al (1994). The second test is the composite test for varying dispersion through simultaneously testing the randomness of cluster effects and the equality of random-effect means. The score test statistics are constructed and expressed in simple, easy to use, matrix formulas. The authors illustrate their test methods using the insecticide data (Giltinan, Capizzi & Malani (1988)).展开更多
基金Project partially supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.60904004)the Key Youth Science and Technology Foundation of University of Electronic Science and Technology of China (Grant No.L08010201JX0720)
文摘This paper studies the problem of robust H∞ control of piecewise-linear chaotic systems with random data loss. The communication links between the plant and the controller are assumed to be imperfect (that is, data loss occurs intermittently, which appears typically in a network environment). The data loss is modelled as a random process which obeys a Bernoulli distribution. In the face of random data loss, a piecewise controller is designed to robustly stabilize the networked system in the sense of mean square and also achieve a prescribed H∞ disturbance attenuation performance based on a piecewise-quadratic Lyapunov function. The required H∞ controllers can be designed by solving a set of linear matrix inequalities (LMIs). Chua's system is provided to illustrate the usefulness and applicability of the developed theoretical results.
文摘Because the traditional method is difficult to obtain the internal relationshipand association rules of data when dealingwith massive data, a fuzzy clusteringmethod is proposed to analyze massive data. Firstly, the sample matrix wasnormalized through the normalization of sample data. Secondly, a fuzzy equivalencematrix was constructed by using fuzzy clustering method based on thenormalization matrix, and then the fuzzy equivalence matrix was applied as thebasis for dynamic clustering. Finally, a series of classifications were carried out onthe mass data at the cut-set level successively and a dynamic cluster diagram wasgenerated. The experimental results show that using data fuzzy clustering methodcan effectively identify association rules of data sets by multiple iterations ofmassive data, and the clustering process has short running time and good robustness.Therefore, it can be widely applied to the identification and classification ofassociation rules of massive data such as sound, image and natural resources.
基金supported by Aeronautical Science Foundation of China (No. 20100251006)Technological Foundation Project of China (No. J132012C001)
文摘For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method(FNM) is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%.
基金supported by National Natural Science Foundation of China (Grant No. 61077071,Grant No. 51075349)Hebei Provincial Natural Science Foundation of China (Grant No. F2011203207)
文摘The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single fractal form,which only reflects the overall irregularity of signals,but cannot describe its local scaling properties.For comprehensive revealing of internal properties,a combinatorial method based on band-phase-randomized(BPR) surrogate data and multifractal is introduced.BPR surrogate data method is effective to eliminate nonlinearity in specified frequency band for a fault signal,which can be utilized to detect nonlinear degree in whole fault signal by nonlinear titration method,and the overall nonlinear distribution of fault signal is displayed in nonlinear characteristic curve that can be used to analyze the fault signal qualitatively.Then multifractal theory as a quantitative analysis method is used to describe geometrical characteristics and local scaling properties,and asymmetry coefficient of multifractal spectrum and multifractal entropy for fault signals are extracted as new criterions to diagnose machinery faults.Several typical faults include rotor misalignment,transversal crack,and static-dynamic rubbing fault are analyzed,and the results indicate that those faults can be distinguished by the proposed method effectively,which provides a qualitative and quantitative analysis way in the field of machinery fault diagnosis.
基金supported by the National Natural Science Foundation of China(Nos.31500518,31500519,and 31470640)
文摘We developed a forest type classification technology for the Daxing'an Mountains of northeast China using multisource remote sensing data.A SPOT-5 image and two temporal images of RADARSAT-2 full-polarization SAR were used to identify forest types in the Pangu Forest Farm of the Daxing'an Mountains.Forest types were identified using random forest(RF) classification with the following data combination types: SPOT-5 alone,SPOT-5 and SAR images in August or November,and SPOT-5 and two temporal SAR images.We identified many forest types using a combination of multitemporal SAR and SPOT-5 images,including Betula platyphylla,Larix gmelinii,Pinus sylvestris and Picea koraiensis forests.The accuracy of classification exceeded 88% and improved by 12% when compared to the classification results obtained using SPOT data alone.RF classification using a combination of multisource remote sensing data improved classification accuracy compared to that achieved using single-source remote sensing data.
文摘In this paper the influence of the differently distributed phase-randontized to the data obtained in dynamic analysis for critical value is studied.The calculation results validate that the sufficient phase-randomized of the different distributed random numbers are less influential on the critical value . This offers the theoretical foundation of the feasibility and practicality of the phase-randomized method.
文摘We consider the problem of variable selection for the single-index random effects models with longitudinal data. An automatic variable selection procedure is developed using smooth-threshold. The proposed method shares some of the desired features of existing variable selection methods: the resulting estimator enjoys the oracle property;the proposed procedure avoids the convex optimization problem and is flexible and easy to implement. Moreover, we use the penalized weighted deviance criterion for a data-driven choice of the tuning parameters. Simulation studies are carried out to assess the performance of our method, and a real dataset is analyzed for further illustration.
文摘The advent of the digital era and computer-based remote communications has significantly enhanced the applicability of various sciences over the past two decades,notably data science(DS)and cryptography(CG).Data science involves clustering and categorizing unstructured data,while cryptography ensures security and privacy aspects.Despite certain CG laws and requirements mandating fully randomized or pseudonoise outputs from CG primitives and schemes,it appears that CG policies might impede data scientists from working on ciphers or analyzing information systems supporting security and privacy services.However,this study posits that CG does not entirely preclude data scientists from operating in the presence of ciphers,as there are several examples of successful collaborations,including homomorphic encryption schemes,searchable encryption algorithms,secret-sharing protocols,and protocols offering conditional privacy.These instances,along with others,indicate numerous potential solutions for fostering collaboration between DS and CG.Therefore,this study classifies the challenges faced by DS and CG into three distinct groups:challenging problems(which can be conditionally solved and are currently available to use;e.g.,using secret sharing protocols,zero-knowledge proofs,partial homomorphic encryption algorithms,etc.),open problems(where proofs to solve exist but remain unsolved and is now considered as open problems;e.g.,proposing efficient functional encryption algorithm,fully homomorphic encryption scheme,etc.),and hard problems(infeasible to solve with current knowledge and tools).Ultimately,the paper will address specific solutions and outline future directions to tackle the challenges arising at the intersection of DS and CG,such as providing specific access for DS experts in secret-sharing algorithms,assigning data index dimensions to DS experts in ultra-dimension encryption algorithms,defining some functional keys in functional encryption schemes for DS experts,and giving limited shares of data to them for analytics.
基金supported by the National Natural Science Foundation of China(Grant Nos.61006003 and 61674038)the Natural Science Foundation of Fujian Province,China(Grant Nos.2015J01249 and 2010J05134)+1 种基金the Science Foundation of Fujian Education Department of China(Grant No.JAT160073)the Science Foundation of Fujian Provincial Economic and Information Technology Commission of China(Grant No.83016006)
文摘As an industry accepted storage scheme, hafnium oxide(HfO_x) based resistive random access memory(RRAM)should further improve its thermal stability and data retention for practical applications. We therefore fabricated RRAMs with HfO_x/ZnO double-layer as the storage medium to study their thermal stability as well as data retention. The HfO_x/ZnO double-layer is capable of reversible bipolar switching under ultralow switching current(〈 3 μA) with a Schottky emission dominant conduction for the high resistance state and a Poole–Frenkel emission governed conduction for the low resistance state. Compared with a drastically increased switching current at 120℃ for the single HfO_x layer RRAM, the HfO_x/ZnO double-layer exhibits excellent thermal stability and maintains neglectful fluctuations in switching current at high temperatures(up to 180℃), which might be attributed to the increased Schottky barrier height to suppress current at high temperatures. Additionally, the HfO_x/ZnO double-layer exhibits 10-year data retention @85℃ that is helpful for the practical applications in RRAMs.
文摘The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare. In recent years, the related technologies of Intelligent Transportation System (ITS) re</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">presented by the Vehicles to Everything (V2X) technology have been developing rapidly. Utilizing the related technologies of ITS, the large-scale vehicle microscopic trajectory data with high quality can be acquired, which provides the research foundation for modeling the car-following behavior based on the data-driven methods. According to this point, a data-driven car-following model based on the Random Forest (RF) method was constructed in this work, and the Next Generation Simulation (NGSIM) dataset was used to calibrate and train the constructed model. The Artificial Neural Network (ANN) model, GM model, and Full Velocity Difference (FVD) model are em</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">ployed to comparatively verify the proposed model. The research results suggest that the model proposed in this work can accurately describe the car-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">following behavior with better performance under multiple performance indicators.
基金The project supported by NNSFC (19631040), NSSFC (04BTJ002) and the grant for post-doctor fellows in SELF.
文摘In this paper, it is discussed that two tests for varying dispersion of binomial data in the framework of nonlinear logistic models with random effects, which are widely used in analyzing longitudinal binomial data. One is the individual test and power calculation for varying dispersion through testing the randomness of cluster effects, which is extensions of Dean(1992) and Commenges et al (1994). The second test is the composite test for varying dispersion through simultaneously testing the randomness of cluster effects and the equality of random-effect means. The score test statistics are constructed and expressed in simple, easy to use, matrix formulas. The authors illustrate their test methods using the insecticide data (Giltinan, Capizzi & Malani (1988)).