Powder-Fueled Water Ramjet Engine(PFWRE)is of great attraction for high-speed and long-voyage underwater propulsion,as well as air–water trans-media navigation applications due to its high energy density and thrust a...Powder-Fueled Water Ramjet Engine(PFWRE)is of great attraction for high-speed and long-voyage underwater propulsion,as well as air–water trans-media navigation applications due to its high energy density and thrust adjustability.However,the complex multiphase combustion process in the combustor significantly affects engine performance.In this study,a detailed model for aluminum particle combustion in water vapor is developed and validated via literature data as well as the ground direct-connected test we conducted.Thereafter,the numerical study on the multiphase combustion process inside the aluminum-based PFWRE combustor is carried out within the Euler–Lagrange framework using the developed model.Results show that a reverse rotating vortex pair before the primary water injection causes particles to flow back towards the combustor head and leads to product deposition.Aluminum particles external to the powder jet have shorter preheating time than internal particles and burn out in advance.The analysis of the particle combustion process indicates that the flame structure inside the combustor consists of the particle preheating zone,the surface combustion heat release zone,the gas-phase combustion heat release zone,and the post-flame zone.In the present configuration,as the particle size increases from 10μm to 20μm,the preheating zone length increases from 35 mm to 85 mm.Meanwhile,heat release from gas-phase combustion decreases,and the average temperature of the combustor head first increases and then decreases.This study not only provides insight into the multiphase combustion characteristics of the aluminum-based PFWRE combustor but also offers guidance for the design of the combustion organization schemes and engine structure optimization.展开更多
To reduce the drag generated by the recirculation flow at the rocket base in a RocketBased Combined Cycle(RBCC)engine operating in the ramjet/scramjet mode,a novel annular rocket RBCC engine based on a central plug co...To reduce the drag generated by the recirculation flow at the rocket base in a RocketBased Combined Cycle(RBCC)engine operating in the ramjet/scramjet mode,a novel annular rocket RBCC engine based on a central plug cone was proposed.The performance loss mechanism caused by the recirculation flow at the rocket base and the influence of the plug cone configuration on the thrust performance were studied.Results indicated that the recirculation flow at the rocket base extended through the entire combustor,which creates an extensive range of the"low-kineticenergy zone"at the center and leads to an engine thrust loss.The plug cone serving as a surface structure had a restrictive effect on the internal flow of the engine,making it smoothly transit at the position of the large separation zone.The model RBCC engine could achieve a maximum thrust augmentation of 37.6%with a long plug cone that was twice diameter of the inner isolator.However,a shorter plug cone that was half diameter of the inner isolator proved less effective at reducing the recirculation flow for a supersonic flow and induced an undesirable flow fraction that diminished the thrust performance.Furthermore,the effectiveness of the plug cone increased with the flight Mach number,indicating that it could further broaden the operating speed range of the scramjet mode.展开更多
The solid-fueled Scramjet is an interesting option for supersonic combustion ramjet.It shows significant advantages such as simple fuel supply and compactness,avoiding the complex system of tanks and pipelines that en...The solid-fueled Scramjet is an interesting option for supersonic combustion ramjet.It shows significant advantages such as simple fuel supply and compactness,avoiding the complex system of tanks and pipelines that encountered in liquid-fueled Scramjets.The solid-fueled Scramjet could be the simplest air-breathing engine for the hypersonic flight regime.This paper presents a comprehensive and systematic review of the research progress on solid-fueled Scramjet in various institutes and universities.It summarizes a progress overview of three types of the solid-fueled Scramjet,which covers a wealth of landmark numerical and experimental results.Based on this,several relevant key technologies are proposed.Several inherent scientific issues are refined,such as the mixing mechanism of multi-phase flow and supersonic airflow,ignition and combustion mechanism of the condensed phase in a supersonic airflow,and coupling mechanism of gas and solid phase in a supersonic flow.Finally,the historical development trend is clarified,and some recommendations are provided for future solid-fueled Scramjet.展开更多
For achieving high-speed requirement of underwater vehicle,a conceptual engine,which utilizes the hydroreactive characteristic of several metals under supercavitation environment,has been put forward. Especially,in or...For achieving high-speed requirement of underwater vehicle,a conceptual engine,which utilizes the hydroreactive characteristic of several metals under supercavitation environment,has been put forward. Especially,in order to obtain specific impulse as great as possible,a dual water injection system is taken into account. Then thermodynamic cycle model,which lead the improvement of power plant and energy system,is introduced in detail,and thermal efficiency is also analyzed. Furthermore,for investigating the performance of this kind of engine system,detailed thermodynamic calculation and analysis are achieved. Especially,regarding hydroreactive metal fuel Mg/AP/HTPB as our target fuel-rich propellant,considering its obvious deficient oxygen property and the energy property of magnesium/water reaction,theoretical calculation method is established by integrating chemical non-equilibrium with chemical equilibrium. Accordingly,low limit of primary water/fuel ratio is determined. In addition,the qualitative and quantitative relationship of performance parameters,such as theoretical specific impulse,nozzle exit temperature,characteristic velocity,etc.,versus water/fuel ratio is investigated respectively.展开更多
The optimization method of a mathematical model and connected-pipe experimental technique for a test in altitude test facility (ATF) of a liquid fuel ramjet engine was researched.The optimization of the simple mathema...The optimization method of a mathematical model and connected-pipe experimental technique for a test in altitude test facility (ATF) of a liquid fuel ramjet engine was researched.The optimization of the simple mathematical model was divided into two steps.Firstly,using the test engine's geometry configuration size data,a preliminary adjustment was done.Secondly,using experimental test data,the components' experiential coefficients were modified appropriately.Emphasis was laid on the simulation technique of flight condition and parameters measurement method.The experimental technique was applied to a ramjet ATF test successfully.The comparison results show that the optimized-model has higher precision and the nozzle gross thrust difference drops from 12% to about 4%.展开更多
numerical simulation was conducted to study the influence of bleeding. The Euler-Lagrange method was used to investigate the two-phase turbulent combustion flow. Standard k-ε turbulent model was adopted in the contin...numerical simulation was conducted to study the influence of bleeding. The Euler-Lagrange method was used to investigate the two-phase turbulent combustion flow. Standard k-ε turbulent model was adopted in the continuous phase simulation and particle-trajectory model was adopted in the dispersed phase simulation. The results demonstrates: air bleeding can improve the flow field after the strut and the stability of trapped vortex in the cavity; change of bleeding temperature has little effect on the total pressure recovery coefficient and significant effect on combustion efficiency; When fuel-air ratio changes, the combustor performs better in a lean oil state.展开更多
Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, an...Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, and specific impulse, but water flux changes the shapes of supercavity. To uncover the cavitator drag characteristics and the supercavity shape of HSSVs with water inflow for ramjets, supercavitation flows around a disk cavitator with inlet hole are studied using the homogenous model. By changing the water inflow in the range of 0-10 L/s through cavitators having different water inlet areas, a series of numerical simulations of supercavitation flows was performed. The water inflow flux of ramjets significantly influences the drag features of disk cavitators and the supercavity shape, but it has little influence on the slender ratio of supercavitaty. Furthermore, as the water inlet area increases, the drag coefficient of the cavitators' front face decreases, but this increase does not influence the diameter of the supercavity's maximum cross section and the drag coefficient of the entire cavitator significantly. In addition, with increasing waterflux of the ramjet, both the drag coefficient of cavitators and the maximum diameter of supercavities decrease stably. This research will be helpful for layout optimization and supercavitaty scheme design of HSSVs with water inflow for ramjets.展开更多
The fundamental performance analysis of an advanced concept ramjet propulsion system using antimatter is presented. Antimatter is generated by ultra-intense laser pulses incident on a gold target. The scientific found...The fundamental performance analysis of an advanced concept ramjet propulsion system using antimatter is presented. Antimatter is generated by ultra-intense laser pulses incident on a gold target. The scientific foundation for the generation of antimatter by an ultra-intense laser was established in the early 1970’s and later demonstrated at Lawrence Livermore National Laboratory from 2008 to 2009. Antimatter on the scale of 2 × 1010 positrons were generated through a ~1 ps pulse from the Lawrence Livermore National Laboratory Titan laser that has an intensity of ~1020 W/cm2. The predominant mechanism is the Bethe-Heitler process, which involves high-energy bremsstrahlung photons as a result of electron-nuclei interaction. Propulsion involving lasers through chemical rather than non-chemical interaction has been previously advocated by Phipps. The major utilities of the ultra-intense laser derived antimatter ramjet are the capability to generate antimatter without a complex storage system and the ability to decouple the antimatter ramjet propulsion system from the energy source. For instance the ultra-intense laser and energy source could be terrestrial, while the ramjet could be mounted to a UAV as a propulsion system. With the extrapolation of current technologies, a sufficient number of pulses by ultra-intense lasers are eventually anticipated for the generation of antimatter to heat the propulsive flow of a ramjet. Fundamental performance analysis is provided based on an ideal ramjet derivation that is modified to address the proposed antimatter ramjet architecture.展开更多
Experiments were conducted to determine the effects of the mixing section configurations on the Mg-CO_(2)Martian ramjet combustion efficiency.It was carried out at a mainstream mass flow rate of 110 g/s and a temperat...Experiments were conducted to determine the effects of the mixing section configurations on the Mg-CO_(2)Martian ramjet combustion efficiency.It was carried out at a mainstream mass flow rate of 110 g/s and a temperature of 810 K.The chamber pressure was measured under different configurations and Oxidizer to Fuel(O/F)ratios.Results showed that the engine achieved self-sustaining combustion and worked stably during experiments.The pre-combustion chamber is needed to increase the combustion efficiency and promote the full combustion of the powder.After the configuration of the pre-combustion chamber,the best combustion efficiency reached 80%when radial powder injection and lateral carbon dioxide intake were used.In addition,the O/F ratio in the pre-combustion chamber decreased from 0.67 to 0.31,resulting in an 8%increase in the combustion efficiency.It was speculated that different mixing section configurations and the variations in an O/F ratio within the pre-combustion chamber impacted the combustion efficiency and in essence,all affected the flow velocity and residence time of the two-phase flow in the com-bustion chamber.展开更多
To research the self-ignition characteristics of high-speed ramjet kinetic energy projectile in the launch process, the self-ignition process based on the solid fuel of polyethylene was numerically simulated by using ...To research the self-ignition characteristics of high-speed ramjet kinetic energy projectile in the launch process, the self-ignition process based on the solid fuel of polyethylene was numerically simulated by using the dynamic grid technology. The effect of different muzzle velocity on the self-ignition performance, and the effect of opening the blockage at different times on the flow field stability of the combustion chamber and the flow field characteristics after the solid fuel ramjet stabilized were analyzed. The results show that the occurrence of self-ignition is not only related to the pressure, temperature in the combustion chamber, and the muzzle velocity, but also to the content of C_2H_4 and its degree of mixing with air in the combustion chamber. After the kinetic energy projectile gets out of the muzzle and before the blockage opens, there is oscillation occurring in the combustion chamber. The higher the muzzle velocity of the kinetic energy projectile, the more prone to the occurrence of the self-ignition and the negative effects can be avoided due to the pressure oscillation in the combustion chamber. The effect of opening the blockage at different times on the flow field stability after the self-ignition occurs in a period of time is weak. After the blockage opens, the solid fuel ramjet can reach a stable working condition quickly.展开更多
Recent research and development on ramjet and supersonic combustion ramjet(scramjet)engines is concerned with producing greater thrust,higher speed,or lower emission.This is most likely driven by the fact that superso...Recent research and development on ramjet and supersonic combustion ramjet(scramjet)engines is concerned with producing greater thrust,higher speed,or lower emission.This is most likely driven by the fact that supersonic/hypersonic propulsion systems have a broad range of applications in military sectors.The performances of such supersonic/hypersonic propulsion systems depend on a series of physical and thermodynamic parameters,such as the fuel types,flight conditions,geometries and sizes of the engines,engine inlet pressure/velocity.As a propulsion system,a stable and efficient combustion is desirable.However,self-excited large-amplitude combustion oscillations(also known as combustion instabilities)have been observed in liquid-and solid-propellant ramjet and scramjet engines,which may be due to acoustic resonance between inlet and nozzle,vortex kinematics(large coherent structures),and acoustic-convective wave coupling mechanisms due to combustion.Such intensified pressure oscillations are undesirable,since they can lead to violent structural vibration,and overheating.How to enhance and predict the engines'stability behaviors is another challenge for engine manufacturers.The present work surveys the research and development in ramjet combustion and combustion instabilities in ramjet engines.Typical active and passive controls of ramjet combustion instabilities are then reviewed.To support this review,a case study of combustion instability in solid-fueled ramjet is provided.The popular mode decomposition algorithms such as DMD(dynamic mode decomposition)and POD(proper orthogonal decomposition)are discussed and applied to shed lights on the ramjet combustion instability in the present case study.展开更多
In this paper, the objective is to achieve a successful coupling match and stable operation between the rotating detonation combustor (RDC) and the ramjet engine isolator. The propagation characteristics of the rotati...In this paper, the objective is to achieve a successful coupling match and stable operation between the rotating detonation combustor (RDC) and the ramjet engine isolator. The propagation characteristics of the rotating detonation wave (RDW) under different outlet areas, as well as the pressure feedback behavior of the isolator, are examined through the use of a gradually expanded S-shaped isolator. Liquid aviation kerosene and air are employed as propellants, and experiments are carried out at a constant air flow rate of 2.17 kg/s and varying equivalence ratios (ERs). The typical mode, pressure, and mode distribution of RDW are analyzed. A stable single-wave mode with a dominant frequency of 1138.63 Hz is obtained at the medium area ratio. Reducing the outlet area ratio is beneficial for enhancing the intensity of the detonation wave. Simultaneously, the intensity of the detonation wave increases with the rise of the equivalence ratio, and there exists an optimal equivalence ratio within the medium area ratio, which maximizes the intensity of the detonation wave. With the increase of the outlet area ratio, the boundary of detonable equivalence ratio can be widened, although the pop-out phenomenon becomes more pronounced. The pressure feedback degree of the S-shaped isolator is evaluated by defining the percentage decays of pulsating pressure and steady-state pressure. In the rotating detonation mode, the smaller the outlet area ratio, the larger the percentage decay of pulsation pressure, indicating a greater extent of pressure feedback. At the same time, as the equivalence ratio is increased, the percentage decay of pulsation pressure shows an upward trend. Under the selected operating conditions, the suppression effects of the S-shaped isolator on the pulsating pressure feedback of the detonation wave are 71.53% and 12.07%, and the suppression effects on the steady-state pressure feedback are 14.32% and 45.55%. The experimental verification of the feasibility of the S-shaped isolator presents a novel concept for suppressing the pressure feedback of the detonation wave.展开更多
This study investigates the mixing enhancement mechanism and propagation characteristics of the detonation flow field of a Rotating Detonation Engine(RDE).Three-dimensional numerical simulations of a non-premixed ramj...This study investigates the mixing enhancement mechanism and propagation characteristics of the detonation flow field of a Rotating Detonation Engine(RDE).Three-dimensional numerical simulations of a non-premixed ramjet-based RDE fueled by gaseous ethylene are performed in OpenFOAM for configurations with 15,30,45,and 60 orifices at a flight Mach number of 4.The results show that fuels with a stripped distribution are primarily mixed via tangential diffusion in the cold flow field.The configuration with more orifices has a better upstream mixing efficiency,whereas its downstream mixing efficiency,which is limited by the depth of penetration,is difficult to improve further.Backward Pressure Perturbations(BPPs)opposite to the propagation direction of Rotating Detonation Waves(RDWs)are produced by the reflection of the upstream oblique shock wave with the incoming stream and the hot release of local reactions after RDWs,which significantly affects the propagation mode and mixing.The RDWs propagate in the stable single-wave mode in configurations with 45 or 60 orifices and in the multi-wave mode in configurations with 30 orifices,whereas they fail in configurations with 15 orifices.Compared with that in the cold flow field,deceleration of the main flow,pressurization,and tangential velocity perturbation caused by the RDW substantially enhance the mixing efficiency.Moreover,the tangential velocity perturbations of upstream oblique shock waves and BPPs reduce the unevenness of the fuel distribution for the next cycle.This study reveals the mixing enhancement mechanism of RDWs and can contribute to the design of the injection scheme of the RDE.展开更多
To predict the thrust of bubbly water ramjet with a converging-diverging nozzle, the physical processes occurring in the diffuser, mixing chamber and nozzle were analyzed. The mathematical models were constructed sepa...To predict the thrust of bubbly water ramjet with a converging-diverging nozzle, the physical processes occurring in the diffuser, mixing chamber and nozzle were analyzed. The mathematical models were constructed separately under the restrictions of certain assumptions. The bubbly nozzle flow was examined using a two-fluid model and accomplished by specifying the water velocity distribution in the nozzle. The numerical analysis of flow field in the nozzle shows that the Mach number at the throat is 1.009, near unity, and supersonic bubble flow appears behind the throat. There is greater thrust produced by bubbly water ramjet, compared with single-phase air ramjets. Subsequently, the influences of vessel velocity, air mass flow rate, inlet area Ai, area ratio (i.e., mixing chamber to inlet area Am/Ai), and initial bubble radius on the thrust were emphatically investigated. Results indicate that the thrust increases with the increase of air mass flow rate, inlet area and the area ratio, and the decrease of initial bubble radius. However, the thrust weakly depends on the vessel velocity. These analytical and numerical results are useful for further investigation of bubbly water ramjet engine.展开更多
A two-dimensional Reynolds averaged Navier Stokes(RANS)simulation of a dual mode ramjet(DMRJ)combustor is performed,modeling the University of Michigan dual-mode combustor experimental setup operating in reacting mode...A two-dimensional Reynolds averaged Navier Stokes(RANS)simulation of a dual mode ramjet(DMRJ)combustor is performed,modeling the University of Michigan dual-mode combustor experimental setup operating in reacting mode with different equivalence ratios(4).The simulations are carried out using a k-u SST turbulence model and a steady diffusion flamelet model for non-premixed combustion.Air enters the isolator at Mach 2.2,stagnation pressure and temperature of 549.2 kPa and 1400 K respectively.Hydrogen is injected transverse to the flow direction and upstream of the cavity flame holder to simulate ramjet(4 Z 0.29)and scramjet(4 Z 0.19)modes of operation.Wall static pressure plots are used to validate numerical results against experimental data.Analysis of flow separation in ramjet mode due to the presence of a shock train in the isolator is carried out by means of numerical Schlieren images overlapped with contours of negative axial velocity,showing the effects of shock wave boundary layer interaction(SWBLI).Active control through wall normal boundary layer bleed in the separated flow region is implemented,which weakens the shock train and moves it downstream closer to the cavity.Bleed results in an improved stagnation pressure recovery in ramjet mode,with a marginal increase in combustion efficiency.展开更多
基金supported by the National Natural Science Foundation of China(No.22305053).
文摘Powder-Fueled Water Ramjet Engine(PFWRE)is of great attraction for high-speed and long-voyage underwater propulsion,as well as air–water trans-media navigation applications due to its high energy density and thrust adjustability.However,the complex multiphase combustion process in the combustor significantly affects engine performance.In this study,a detailed model for aluminum particle combustion in water vapor is developed and validated via literature data as well as the ground direct-connected test we conducted.Thereafter,the numerical study on the multiphase combustion process inside the aluminum-based PFWRE combustor is carried out within the Euler–Lagrange framework using the developed model.Results show that a reverse rotating vortex pair before the primary water injection causes particles to flow back towards the combustor head and leads to product deposition.Aluminum particles external to the powder jet have shorter preheating time than internal particles and burn out in advance.The analysis of the particle combustion process indicates that the flame structure inside the combustor consists of the particle preheating zone,the surface combustion heat release zone,the gas-phase combustion heat release zone,and the post-flame zone.In the present configuration,as the particle size increases from 10μm to 20μm,the preheating zone length increases from 35 mm to 85 mm.Meanwhile,heat release from gas-phase combustion decreases,and the average temperature of the combustor head first increases and then decreases.This study not only provides insight into the multiphase combustion characteristics of the aluminum-based PFWRE combustor but also offers guidance for the design of the combustion organization schemes and engine structure optimization.
基金supported by the National Natural Science Foundation of China(Nos.11925207 and 92252206)the Hunan Province Graduate Innovation Project,China(No.XJCX2023059)。
文摘To reduce the drag generated by the recirculation flow at the rocket base in a RocketBased Combined Cycle(RBCC)engine operating in the ramjet/scramjet mode,a novel annular rocket RBCC engine based on a central plug cone was proposed.The performance loss mechanism caused by the recirculation flow at the rocket base and the influence of the plug cone configuration on the thrust performance were studied.Results indicated that the recirculation flow at the rocket base extended through the entire combustor,which creates an extensive range of the"low-kineticenergy zone"at the center and leads to an engine thrust loss.The plug cone serving as a surface structure had a restrictive effect on the internal flow of the engine,making it smoothly transit at the position of the large separation zone.The model RBCC engine could achieve a maximum thrust augmentation of 37.6%with a long plug cone that was twice diameter of the inner isolator.However,a shorter plug cone that was half diameter of the inner isolator proved less effective at reducing the recirculation flow for a supersonic flow and induced an undesirable flow fraction that diminished the thrust performance.Furthermore,the effectiveness of the plug cone increased with the flight Mach number,indicating that it could further broaden the operating speed range of the scramjet mode.
基金supported by the China Scholarship Council and the National Natural Science Foundation of China(Nos.2020JJ4665,51706241).
文摘The solid-fueled Scramjet is an interesting option for supersonic combustion ramjet.It shows significant advantages such as simple fuel supply and compactness,avoiding the complex system of tanks and pipelines that encountered in liquid-fueled Scramjets.The solid-fueled Scramjet could be the simplest air-breathing engine for the hypersonic flight regime.This paper presents a comprehensive and systematic review of the research progress on solid-fueled Scramjet in various institutes and universities.It summarizes a progress overview of three types of the solid-fueled Scramjet,which covers a wealth of landmark numerical and experimental results.Based on this,several relevant key technologies are proposed.Several inherent scientific issues are refined,such as the mixing mechanism of multi-phase flow and supersonic airflow,ignition and combustion mechanism of the condensed phase in a supersonic airflow,and coupling mechanism of gas and solid phase in a supersonic flow.Finally,the historical development trend is clarified,and some recommendations are provided for future solid-fueled Scramjet.
基金Supported by National Natural Science Foundation of China (No .50776070)New Teacher Research Support Program of Xi an Jiaotong University (No .0106-08142002)
文摘For achieving high-speed requirement of underwater vehicle,a conceptual engine,which utilizes the hydroreactive characteristic of several metals under supercavitation environment,has been put forward. Especially,in order to obtain specific impulse as great as possible,a dual water injection system is taken into account. Then thermodynamic cycle model,which lead the improvement of power plant and energy system,is introduced in detail,and thermal efficiency is also analyzed. Furthermore,for investigating the performance of this kind of engine system,detailed thermodynamic calculation and analysis are achieved. Especially,regarding hydroreactive metal fuel Mg/AP/HTPB as our target fuel-rich propellant,considering its obvious deficient oxygen property and the energy property of magnesium/water reaction,theoretical calculation method is established by integrating chemical non-equilibrium with chemical equilibrium. Accordingly,low limit of primary water/fuel ratio is determined. In addition,the qualitative and quantitative relationship of performance parameters,such as theoretical specific impulse,nozzle exit temperature,characteristic velocity,etc.,versus water/fuel ratio is investigated respectively.
文摘The optimization method of a mathematical model and connected-pipe experimental technique for a test in altitude test facility (ATF) of a liquid fuel ramjet engine was researched.The optimization of the simple mathematical model was divided into two steps.Firstly,using the test engine's geometry configuration size data,a preliminary adjustment was done.Secondly,using experimental test data,the components' experiential coefficients were modified appropriately.Emphasis was laid on the simulation technique of flight condition and parameters measurement method.The experimental technique was applied to a ramjet ATF test successfully.The comparison results show that the optimized-model has higher precision and the nozzle gross thrust difference drops from 12% to about 4%.
文摘numerical simulation was conducted to study the influence of bleeding. The Euler-Lagrange method was used to investigate the two-phase turbulent combustion flow. Standard k-ε turbulent model was adopted in the continuous phase simulation and particle-trajectory model was adopted in the dispersed phase simulation. The results demonstrates: air bleeding can improve the flow field after the strut and the stability of trapped vortex in the cavity; change of bleeding temperature has little effect on the total pressure recovery coefficient and significant effect on combustion efficiency; When fuel-air ratio changes, the combustor performs better in a lean oil state.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 51579209, 51409215 and 51679202
文摘Water ramjets using outer water as an oxidizer have been demonstrated as a potential propulsion mode for underwater High Speed Supercavitating Vehicles (HSSVs) because of their higher energy density, power density, and specific impulse, but water flux changes the shapes of supercavity. To uncover the cavitator drag characteristics and the supercavity shape of HSSVs with water inflow for ramjets, supercavitation flows around a disk cavitator with inlet hole are studied using the homogenous model. By changing the water inflow in the range of 0-10 L/s through cavitators having different water inlet areas, a series of numerical simulations of supercavitation flows was performed. The water inflow flux of ramjets significantly influences the drag features of disk cavitators and the supercavity shape, but it has little influence on the slender ratio of supercavitaty. Furthermore, as the water inlet area increases, the drag coefficient of the cavitators' front face decreases, but this increase does not influence the diameter of the supercavity's maximum cross section and the drag coefficient of the entire cavitator significantly. In addition, with increasing waterflux of the ramjet, both the drag coefficient of cavitators and the maximum diameter of supercavities decrease stably. This research will be helpful for layout optimization and supercavitaty scheme design of HSSVs with water inflow for ramjets.
文摘The fundamental performance analysis of an advanced concept ramjet propulsion system using antimatter is presented. Antimatter is generated by ultra-intense laser pulses incident on a gold target. The scientific foundation for the generation of antimatter by an ultra-intense laser was established in the early 1970’s and later demonstrated at Lawrence Livermore National Laboratory from 2008 to 2009. Antimatter on the scale of 2 × 1010 positrons were generated through a ~1 ps pulse from the Lawrence Livermore National Laboratory Titan laser that has an intensity of ~1020 W/cm2. The predominant mechanism is the Bethe-Heitler process, which involves high-energy bremsstrahlung photons as a result of electron-nuclei interaction. Propulsion involving lasers through chemical rather than non-chemical interaction has been previously advocated by Phipps. The major utilities of the ultra-intense laser derived antimatter ramjet are the capability to generate antimatter without a complex storage system and the ability to decouple the antimatter ramjet propulsion system from the energy source. For instance the ultra-intense laser and energy source could be terrestrial, while the ramjet could be mounted to a UAV as a propulsion system. With the extrapolation of current technologies, a sufficient number of pulses by ultra-intense lasers are eventually anticipated for the generation of antimatter to heat the propulsive flow of a ramjet. Fundamental performance analysis is provided based on an ideal ramjet derivation that is modified to address the proposed antimatter ramjet architecture.
基金supported by the Fund of Advance Research Projects of Manned Spaceflight,China(No.050303).
文摘Experiments were conducted to determine the effects of the mixing section configurations on the Mg-CO_(2)Martian ramjet combustion efficiency.It was carried out at a mainstream mass flow rate of 110 g/s and a temperature of 810 K.The chamber pressure was measured under different configurations and Oxidizer to Fuel(O/F)ratios.Results showed that the engine achieved self-sustaining combustion and worked stably during experiments.The pre-combustion chamber is needed to increase the combustion efficiency and promote the full combustion of the powder.After the configuration of the pre-combustion chamber,the best combustion efficiency reached 80%when radial powder injection and lateral carbon dioxide intake were used.In addition,the O/F ratio in the pre-combustion chamber decreased from 0.67 to 0.31,resulting in an 8%increase in the combustion efficiency.It was speculated that different mixing section configurations and the variations in an O/F ratio within the pre-combustion chamber impacted the combustion efficiency and in essence,all affected the flow velocity and residence time of the two-phase flow in the com-bustion chamber.
基金supported by the National Natural Science Foundation of China(No.11602109)the Jiangsu Province Natural Science Foundation of China(No.BK20160836)the Fundamental Research Funds for the Central Universities(No.309171B8807)
文摘To research the self-ignition characteristics of high-speed ramjet kinetic energy projectile in the launch process, the self-ignition process based on the solid fuel of polyethylene was numerically simulated by using the dynamic grid technology. The effect of different muzzle velocity on the self-ignition performance, and the effect of opening the blockage at different times on the flow field stability of the combustion chamber and the flow field characteristics after the solid fuel ramjet stabilized were analyzed. The results show that the occurrence of self-ignition is not only related to the pressure, temperature in the combustion chamber, and the muzzle velocity, but also to the content of C_2H_4 and its degree of mixing with air in the combustion chamber. After the kinetic energy projectile gets out of the muzzle and before the blockage opens, there is oscillation occurring in the combustion chamber. The higher the muzzle velocity of the kinetic energy projectile, the more prone to the occurrence of the self-ignition and the negative effects can be avoided due to the pressure oscillation in the combustion chamber. The effect of opening the blockage at different times on the flow field stability after the self-ignition occurs in a period of time is weak. After the blockage opens, the solid fuel ramjet can reach a stable working condition quickly.
基金financially supported by the University of Canterbury,New Zealand with grant No.452DISDZ。
文摘Recent research and development on ramjet and supersonic combustion ramjet(scramjet)engines is concerned with producing greater thrust,higher speed,or lower emission.This is most likely driven by the fact that supersonic/hypersonic propulsion systems have a broad range of applications in military sectors.The performances of such supersonic/hypersonic propulsion systems depend on a series of physical and thermodynamic parameters,such as the fuel types,flight conditions,geometries and sizes of the engines,engine inlet pressure/velocity.As a propulsion system,a stable and efficient combustion is desirable.However,self-excited large-amplitude combustion oscillations(also known as combustion instabilities)have been observed in liquid-and solid-propellant ramjet and scramjet engines,which may be due to acoustic resonance between inlet and nozzle,vortex kinematics(large coherent structures),and acoustic-convective wave coupling mechanisms due to combustion.Such intensified pressure oscillations are undesirable,since they can lead to violent structural vibration,and overheating.How to enhance and predict the engines'stability behaviors is another challenge for engine manufacturers.The present work surveys the research and development in ramjet combustion and combustion instabilities in ramjet engines.Typical active and passive controls of ramjet combustion instabilities are then reviewed.To support this review,a case study of combustion instability in solid-fueled ramjet is provided.The popular mode decomposition algorithms such as DMD(dynamic mode decomposition)and POD(proper orthogonal decomposition)are discussed and applied to shed lights on the ramjet combustion instability in the present case study.
基金supported by the National Natural Science Foundation of China(Grant No.52025064).
文摘In this paper, the objective is to achieve a successful coupling match and stable operation between the rotating detonation combustor (RDC) and the ramjet engine isolator. The propagation characteristics of the rotating detonation wave (RDW) under different outlet areas, as well as the pressure feedback behavior of the isolator, are examined through the use of a gradually expanded S-shaped isolator. Liquid aviation kerosene and air are employed as propellants, and experiments are carried out at a constant air flow rate of 2.17 kg/s and varying equivalence ratios (ERs). The typical mode, pressure, and mode distribution of RDW are analyzed. A stable single-wave mode with a dominant frequency of 1138.63 Hz is obtained at the medium area ratio. Reducing the outlet area ratio is beneficial for enhancing the intensity of the detonation wave. Simultaneously, the intensity of the detonation wave increases with the rise of the equivalence ratio, and there exists an optimal equivalence ratio within the medium area ratio, which maximizes the intensity of the detonation wave. With the increase of the outlet area ratio, the boundary of detonable equivalence ratio can be widened, although the pop-out phenomenon becomes more pronounced. The pressure feedback degree of the S-shaped isolator is evaluated by defining the percentage decays of pulsating pressure and steady-state pressure. In the rotating detonation mode, the smaller the outlet area ratio, the larger the percentage decay of pulsation pressure, indicating a greater extent of pressure feedback. At the same time, as the equivalence ratio is increased, the percentage decay of pulsation pressure shows an upward trend. Under the selected operating conditions, the suppression effects of the S-shaped isolator on the pulsating pressure feedback of the detonation wave are 71.53% and 12.07%, and the suppression effects on the steady-state pressure feedback are 14.32% and 45.55%. The experimental verification of the feasibility of the S-shaped isolator presents a novel concept for suppressing the pressure feedback of the detonation wave.
基金supported from support from the National Natural Science Foundation of China(Nos.12441204,12302451 and 1202491)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX20210075)。
文摘This study investigates the mixing enhancement mechanism and propagation characteristics of the detonation flow field of a Rotating Detonation Engine(RDE).Three-dimensional numerical simulations of a non-premixed ramjet-based RDE fueled by gaseous ethylene are performed in OpenFOAM for configurations with 15,30,45,and 60 orifices at a flight Mach number of 4.The results show that fuels with a stripped distribution are primarily mixed via tangential diffusion in the cold flow field.The configuration with more orifices has a better upstream mixing efficiency,whereas its downstream mixing efficiency,which is limited by the depth of penetration,is difficult to improve further.Backward Pressure Perturbations(BPPs)opposite to the propagation direction of Rotating Detonation Waves(RDWs)are produced by the reflection of the upstream oblique shock wave with the incoming stream and the hot release of local reactions after RDWs,which significantly affects the propagation mode and mixing.The RDWs propagate in the stable single-wave mode in configurations with 45 or 60 orifices and in the multi-wave mode in configurations with 30 orifices,whereas they fail in configurations with 15 orifices.Compared with that in the cold flow field,deceleration of the main flow,pressurization,and tangential velocity perturbation caused by the RDW substantially enhance the mixing efficiency.Moreover,the tangential velocity perturbations of upstream oblique shock waves and BPPs reduce the unevenness of the fuel distribution for the next cycle.This study reveals the mixing enhancement mechanism of RDWs and can contribute to the design of the injection scheme of the RDE.
文摘To predict the thrust of bubbly water ramjet with a converging-diverging nozzle, the physical processes occurring in the diffuser, mixing chamber and nozzle were analyzed. The mathematical models were constructed separately under the restrictions of certain assumptions. The bubbly nozzle flow was examined using a two-fluid model and accomplished by specifying the water velocity distribution in the nozzle. The numerical analysis of flow field in the nozzle shows that the Mach number at the throat is 1.009, near unity, and supersonic bubble flow appears behind the throat. There is greater thrust produced by bubbly water ramjet, compared with single-phase air ramjets. Subsequently, the influences of vessel velocity, air mass flow rate, inlet area Ai, area ratio (i.e., mixing chamber to inlet area Am/Ai), and initial bubble radius on the thrust were emphatically investigated. Results indicate that the thrust increases with the increase of air mass flow rate, inlet area and the area ratio, and the decrease of initial bubble radius. However, the thrust weakly depends on the vessel velocity. These analytical and numerical results are useful for further investigation of bubbly water ramjet engine.
文摘A two-dimensional Reynolds averaged Navier Stokes(RANS)simulation of a dual mode ramjet(DMRJ)combustor is performed,modeling the University of Michigan dual-mode combustor experimental setup operating in reacting mode with different equivalence ratios(4).The simulations are carried out using a k-u SST turbulence model and a steady diffusion flamelet model for non-premixed combustion.Air enters the isolator at Mach 2.2,stagnation pressure and temperature of 549.2 kPa and 1400 K respectively.Hydrogen is injected transverse to the flow direction and upstream of the cavity flame holder to simulate ramjet(4 Z 0.29)and scramjet(4 Z 0.19)modes of operation.Wall static pressure plots are used to validate numerical results against experimental data.Analysis of flow separation in ramjet mode due to the presence of a shock train in the isolator is carried out by means of numerical Schlieren images overlapped with contours of negative axial velocity,showing the effects of shock wave boundary layer interaction(SWBLI).Active control through wall normal boundary layer bleed in the separated flow region is implemented,which weakens the shock train and moves it downstream closer to the cavity.Bleed results in an improved stagnation pressure recovery in ramjet mode,with a marginal increase in combustion efficiency.