Based on the daily precipitation data of 545 meteorological stations in China from 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall and rainy days in different months of China were di...Based on the daily precipitation data of 545 meteorological stations in China from 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall and rainy days in different months of China were diagnosed from three aspects: climatic characteristics, variation trend and interannual variation. The results showed that:(1) Rainstorm rainfall and rainy days in different months of China from 1961 to 2016 had similar spatial characteristics in corresponding months. From January to July, the high-value areas of rainstorm rainfall and rainy days gradually expanded from southeast coast to northwest inland, but mainly distributed in the east area of Hu Huanyong Line. From August to December, it shrank from northwest to southeast coastal areas. Rainstorm rainfall and rainy days were less distributed in different months in the west area of Hu Huanyong Line;(2) From 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall in different months in China were basically consistent with that of rainy days. May to August was the most significant month for the variation trend of rainstorm rainfall and rainy days in China. It mainly distributed in the southeast monsoon area, and was mainly increasing trend. The trend of rainstorm rainfall and rainy days in northwest China changed slightly in different months;(3) The interannual variability of rainstorm rainfall in different months in China from 1961 to 2016 was similar to that of rainy days. The fluctuation characteristics from April to October were larger in the northern region. The southern region fluctuated greatly from November to December in January to March. With the development of the month, the high-value areas with large daily fluctuations of rainstorm rainfall and rainy days gradually expanded from southeast to northwest, northeast and southwest, and the fluctuations in southeast tended to decrease, then shrank from northwest, northeast and southwest to southeast, with the increasing fluctuations in southeast. The study has certain reference significance for flood control and disaster reduction and water resources planning and utilization.展开更多
Based on the data from the China National Meteorological Station and the fifth-generation reanalysis data of the European Center for Medium-Range Weather Forecasts, we investigated and examined the precipitation, circ...Based on the data from the China National Meteorological Station and the fifth-generation reanalysis data of the European Center for Medium-Range Weather Forecasts, we investigated and examined the precipitation, circulation, and dynamic conditions of the rainstorm in Henan in July 2021. The results show that: 1) This precipitation is of very heavy rainfall level, beginning on the 19<sup>th</sup> and lasting until the 21<sup>st</sup>, with a 3-hour cumulative precipitation of more than 200 mm at Zhengzhou station at 19:00 on the 20<sup>th</sup>. The major focus of this precipitation is in Zhengzhou, Henan Province, and it also radiates to Jiaozuo, Xinxiang, Kaifeng, Xuchang, Pingdingshan, Luoyang, Luohe, and other places. 2) The Western Pacific Subtropical High (WPSH), typhoons “In-Fa” and “Cempaka”, as well as the less dynamic strengthening of the Eurasian trough ridge structure, all contributed to the short-term maintenance of the favorable large-scale circulation background and water vapor conditions for this rainstorm in Henan. 3) The vertical structure of low-level convergence and high-level dispersion near Zhengzhou, together with the topographic blocking and lifting impact, produced favorable dynamic lifting conditions for this rainstorm.展开更多
Based on conventional radiosonde data, surface encrypted observation data and so forth, the diagnostic analysis of a heavy rainstorm in the central and east of Henan Province on June 29, 2006 was carried out from the ...Based on conventional radiosonde data, surface encrypted observation data and so forth, the diagnostic analysis of a heavy rainstorm in the central and east of Henan Province on June 29, 2006 was carried out from the aspects of its large-scale background, environmental field and physical characteristics. The results showed that under the effect of a favorable large-scale environmental field, the rainstorm was caused by a mesoscale system. The high-east and low-west circulation pattern, the eastward movement of high-level low trough, low-level shear lines and strengthening of low-level jet streams directly resulted in the occurrence of the heavy rainstorm.展开更多
基金Sponsored by National Natural Science Foundation of China(41801064 71790611)+2 种基金China Postdoctoral Science Foundation(2019T120114 2019M650756)Central Asia Atmospheric Science Research Fund(CAAS201804)
文摘Based on the daily precipitation data of 545 meteorological stations in China from 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall and rainy days in different months of China were diagnosed from three aspects: climatic characteristics, variation trend and interannual variation. The results showed that:(1) Rainstorm rainfall and rainy days in different months of China from 1961 to 2016 had similar spatial characteristics in corresponding months. From January to July, the high-value areas of rainstorm rainfall and rainy days gradually expanded from southeast coast to northwest inland, but mainly distributed in the east area of Hu Huanyong Line. From August to December, it shrank from northwest to southeast coastal areas. Rainstorm rainfall and rainy days were less distributed in different months in the west area of Hu Huanyong Line;(2) From 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall in different months in China were basically consistent with that of rainy days. May to August was the most significant month for the variation trend of rainstorm rainfall and rainy days in China. It mainly distributed in the southeast monsoon area, and was mainly increasing trend. The trend of rainstorm rainfall and rainy days in northwest China changed slightly in different months;(3) The interannual variability of rainstorm rainfall in different months in China from 1961 to 2016 was similar to that of rainy days. The fluctuation characteristics from April to October were larger in the northern region. The southern region fluctuated greatly from November to December in January to March. With the development of the month, the high-value areas with large daily fluctuations of rainstorm rainfall and rainy days gradually expanded from southeast to northwest, northeast and southwest, and the fluctuations in southeast tended to decrease, then shrank from northwest, northeast and southwest to southeast, with the increasing fluctuations in southeast. The study has certain reference significance for flood control and disaster reduction and water resources planning and utilization.
文摘Based on the data from the China National Meteorological Station and the fifth-generation reanalysis data of the European Center for Medium-Range Weather Forecasts, we investigated and examined the precipitation, circulation, and dynamic conditions of the rainstorm in Henan in July 2021. The results show that: 1) This precipitation is of very heavy rainfall level, beginning on the 19<sup>th</sup> and lasting until the 21<sup>st</sup>, with a 3-hour cumulative precipitation of more than 200 mm at Zhengzhou station at 19:00 on the 20<sup>th</sup>. The major focus of this precipitation is in Zhengzhou, Henan Province, and it also radiates to Jiaozuo, Xinxiang, Kaifeng, Xuchang, Pingdingshan, Luoyang, Luohe, and other places. 2) The Western Pacific Subtropical High (WPSH), typhoons “In-Fa” and “Cempaka”, as well as the less dynamic strengthening of the Eurasian trough ridge structure, all contributed to the short-term maintenance of the favorable large-scale circulation background and water vapor conditions for this rainstorm in Henan. 3) The vertical structure of low-level convergence and high-level dispersion near Zhengzhou, together with the topographic blocking and lifting impact, produced favorable dynamic lifting conditions for this rainstorm.
文摘Based on conventional radiosonde data, surface encrypted observation data and so forth, the diagnostic analysis of a heavy rainstorm in the central and east of Henan Province on June 29, 2006 was carried out from the aspects of its large-scale background, environmental field and physical characteristics. The results showed that under the effect of a favorable large-scale environmental field, the rainstorm was caused by a mesoscale system. The high-east and low-west circulation pattern, the eastward movement of high-level low trough, low-level shear lines and strengthening of low-level jet streams directly resulted in the occurrence of the heavy rainstorm.