期刊文献+
共找到2,013篇文章
< 1 2 101 >
每页显示 20 50 100
Resource saving based dwell time allocation and detection threshold optimization in an asynchronous distributed phased array radar network 被引量:2
1
作者 Haowei ZHANG Weijian LIU Xiao YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期311-327,共17页
The resource optimization plays an important role in an asynchronous Phased Array Radar Network(PARN)tracking multiple targets with Measurement Origin Uncertainty(MOU),i.e.,considering the false alarms and missed dete... The resource optimization plays an important role in an asynchronous Phased Array Radar Network(PARN)tracking multiple targets with Measurement Origin Uncertainty(MOU),i.e.,considering the false alarms and missed detections.A Joint Dwell Time Allocation and Detection Threshold Optimization(JDTADTO)strategy is proposed for resource saving in this case.The Predicted Conditional Cramér-Rao Lower Bound(PC-CRLB)with Bayesian Detector and Amplitude Information(BD-AI)is derived and adopted as the tracking performance metric.The optimization model is formulated as minimizing the difference between the PC-CRLBs and the tracking precision thresholds under the constraints of upper and lower bounds of dwell time and false alarm ratio.It is shown that the objective function is nonconvex due to the Information Reduction Factor(IRF)brought by the MOU.A cyclic minimizer-based solution is proposed for problem solving.Simulation results confirm the flexibility and robustness of the JDTADTO strategy in both sufficient and insufficient resource scenarios.The results also reveal the effectiveness of the proposed strategy compared with the strategies adopting the BD without detection threshold optimization and amplitude information. 展开更多
关键词 Asynchronous data fusion Bayesian detector Phased Array radar network(PARN) Predicted Conditional CramE´R-Rao Lower Bound(PC-CRLB) Resource management
原文传递
New structure of Kalman filter for radar networking 被引量:1
2
作者 HeYou DongYunlong WangGuohong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期241-244,共4页
Due to the different data rates of the sensors and communication delays in the radar netting, the research of the asynchronous multisensor data fusion problem is more practical than that of the synchronous one. Throug... Due to the different data rates of the sensors and communication delays in the radar netting, the research of the asynchronous multisensor data fusion problem is more practical than that of the synchronous one. Through discussing the sequential approach, which is the classical asynchronous multisensor data fusion algorithm, a new algorithm based on distributed computation structure is proposed. The new algorithm can meet the requirement of real-time computation of netting fusion system, and is more practical for engineering compared with the classical sequential approach. Simulation results show the validity of the presented algorithm. 展开更多
关键词 MULTI-SENSOR radar networking ASYNCHRONOUS FUSION SEQUENTIAL
在线阅读 下载PDF
Track-to-Track Association Technique in Radar Network in the Presence of Systematic Errors 被引量:1
3
作者 Jian Yang Qiang Song +1 位作者 Changwen Qu You He 《Journal of Signal and Information Processing》 2013年第3期288-298,共11页
The presence of systematic measuring errors complicates track-to-track association, spatially separates the tracks that correspond to the same true target, and seriously decline the performances of traditional track-t... The presence of systematic measuring errors complicates track-to-track association, spatially separates the tracks that correspond to the same true target, and seriously decline the performances of traditional track-to-track association algorithms. Consequently, the influence of radar systematic errors on tracks from different radars, which is described as some rotation and translation, has been analyzed theoretically in this paper. In addition, a novel approach named alignment-correlation method is developed to estimate and reduce this effect, align and correlate tracks accurately without prior registration using phase correlation technique and statistic binary track correlation algorithm. Monte-Carlo simulation results illustrate that the proposed algorithm has good performance in solving the track-to-track association problem with systematic errors in radar network and could provide effective and reliable associated tracks for the next step of registration. 展开更多
关键词 Systematic ERRORS Phase CORRELATION Track-to-Track ASSOCIATION Sensor REGISTRATION radar network
暂未订购
Optimized deployment of a radar network based on an improved firefly algorithm 被引量:3
4
作者 Xue-jun ZHANG Wei JIA +3 位作者 Xiang-min GUAN Guo-qiang XU Jun CHEN Yan-bo ZHU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第3期425-437,共13页
The threats and challenges of unmanned aerial vehicle(UAV) invasion defense due to rapid UAV development have attracted increased attention recently. One of the important UAV invasion defense methods is radar network ... The threats and challenges of unmanned aerial vehicle(UAV) invasion defense due to rapid UAV development have attracted increased attention recently. One of the important UAV invasion defense methods is radar network detection. To form a tight and reliable radar surveillance network with limited resources, it is essential to investigate optimized radar network deployment. This optimization problem is difficult to solve due to its nonlinear features and strong coupling of multiple constraints. To address these issues, we propose an improved firefly algorithm that employs a neighborhood learning strategy with a feedback mechanism and chaotic local search by elite fireflies to obtain a trade-off between exploration and exploitation abilities. Moreover, a chaotic sequence is used to generate initial firefly positions to improve population diversity. Experiments have been conducted on 12 famous benchmark functions and in a classical radar deployment scenario. Results indicate that our approach achieves much better performance than the classical firefly algorithm(FA) and four recently proposed FA variants. 展开更多
关键词 IMPROVED FIREFLY algorithm radar surveillance network DEPLOYMENT optimization Unmanned AERIAL vehicle (UAV) INVASION DEFENSE
原文传递
Three-dimensional Fusion of Spaceborne and Ground Radar Reflectivity Data Using a Neural Network–Based Approach 被引量:5
5
作者 Leilei KOU Zhuihui WANG Fen XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第3期346-359,共14页
The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relative... The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method: interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm. 展开更多
关键词 TRMM PR ground radar 3D fusion neural network
在线阅读 下载PDF
Layer-Constrained Triangulated Irregular Network Algorithm Based on Ground Penetrating Radar Data and Its Application 被引量:1
6
作者 Zhenwu Wang Jianqiang Ma 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期146-154,共9页
In this paper,a layer-constrained triangulated irregular network( LC-TIN) algorithm is proposed for three-dimensional( 3 D) modelling,and applied to construct a 3 D model for geological disease information based o... In this paper,a layer-constrained triangulated irregular network( LC-TIN) algorithm is proposed for three-dimensional( 3 D) modelling,and applied to construct a 3 D model for geological disease information based on ground penetrating radar( GPR) data. Compared with the traditional TIN algorithm,the LCTIN algorithm introduced a layer constraint to the discrete data points during the 3 D modelling process,and it can dynamically construct networks from layer to layer and implement 3 D modelling for arbitrary shapes with high precision. The experimental results validated this method,the proposed algorithm not only can maintain the rationality of triangulation network,but also can obtain a good generation speed. In addition,the algorithm is also introduced to our self-developed 3 D visualization platform,which utilized GPR data to model geological diseases. Therefore the feasibility of the algorithm is verified in the practical application. 展开更多
关键词 layer-constrained triangulated irregular network geological diseases ground penetrating radar
在线阅读 下载PDF
Wireless Networked Cognitive Radar System:Overview and Design Guidelines
7
作者 Wu Qinhao Wang Hongqiang +1 位作者 Zhang Bo Wang Shuai 《China Communications》 SCIE CSCD 2024年第12期1-27,共27页
Cognitive radar is a concept proposed by Simon Haykin in 2006 as a new generation of radar system that imitates human cognitive features.Different from the adaptive signal processing at the receiver in adaptive radar,... Cognitive radar is a concept proposed by Simon Haykin in 2006 as a new generation of radar system that imitates human cognitive features.Different from the adaptive signal processing at the receiver in adaptive radar,the cognitive radar realizes closedloop adaptive policy adjustment of both transmitter and receiver in the continuous interaction with the environment.As a networked radar may significantly enhance the flexibility and robustness than its monostatic counterpart,the wireless networked cognitive radar(WNCR)attracts increasing research.This article firstly reviews the concept and development of cognitive radar,especially the related researches of networked cognitive radar.Then,the co-design of cognitive radar and communication is investigated.Although the communication quality between radar sensing nodes is the premise of detection,tracking,imaging and anti-jamming performance of the WNCR,the latest researches seldom consider the communication architecture design for WNCR.Therefore,this article mainly focuses on the proposal of WNCR concept based on the researches of cognitive radar and analyzes research challenges of WNCR system in practical application,and the corresponding guidelines are proposed to inspire future research. 展开更多
关键词 electronic countermeasures networked cognitive radar OODA loop radar-communication co-design spectrum sensing
在线阅读 下载PDF
Land Cover Classification of RADARSAT-2 SAR Data Using Convolutional Neural Network 被引量:3
8
作者 LIN Wei LIAO Xiangyong +1 位作者 DENG Juan LIU Yao 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第2期151-158,共8页
In this paper,we propose a convolutional neural network(CNN)based on deep learning method for land cover classification of synthetic aperture radar(SAR)images.The proposed method consists of convolutional layers,p... In this paper,we propose a convolutional neural network(CNN)based on deep learning method for land cover classification of synthetic aperture radar(SAR)images.The proposed method consists of convolutional layers,pooling layers,a full connection layer and an output layer.The method acquires high-level abstractions for SAR data by using a hierarchical architecture composed of multiple non-linear transformations such as convolutions and poolings.The feature maps produced by convolutional layers are subsampled by pooling layers and then are converted into a feature vector by the full connection layer.The feature vector is then used by the output layer with softmax regression to perform land cover classification.The multi-layer method replaces hand-engineered features with backpropagation(BP)neural network algorithm for supervised feature learning,hierarchical feature extraction and land cover classification of SAR images.RADARSAT-2 ultra-fine beam high resolution HH-SAR images acquired in the rural urban fringe of the Greater Toronto Area(GTA)are selected for this study.The experiment results show that the accuracy of our classification method is about90%which is higher than that of nearest neighbor(NN). 展开更多
关键词 synthetic aperture radar (SAR) CLASSIFICATION deep learning convolutional neural network (CNN) softmax regression
原文传递
基于机器学习和雷达数据的强对流单体识别追踪方法
9
作者 赵玉娟 郑栋 +5 位作者 孙晓磊 李宗飞 姜罕盛 武国良 崇晓峰 赵婥 《计算机测量与控制》 2026年第1期205-213,共9页
对流风暴由对流单体构成,常产生强对流天气,威胁人民生命和财产安全;面向提升强对流天气监测预警需求,提出了基于DBSCAN的强对流单体自动识别追踪方法,丰富了识别强对流单体的源数据类型,除雷达组合反射率产品外,新增雷达回波顶高产品,... 对流风暴由对流单体构成,常产生强对流天气,威胁人民生命和财产安全;面向提升强对流天气监测预警需求,提出了基于DBSCAN的强对流单体自动识别追踪方法,丰富了识别强对流单体的源数据类型,除雷达组合反射率产品外,新增雷达回波顶高产品,支持任意组合雷达组合反射率和回波顶高产品用于强对流单体识别,通过图像处理技术改进雷达数据质量,提升强对流单体识别准确率,运用相邻三时次雷达数据修正追踪结果,提升强对流单体追踪的准确性;基于2023-2024年环渤海地区17次强对流天气过程对应雷达组网数据,对方法所构建模型进行训练和测试,检验结果表明,方法能有效识别形态各异、尺度不同的强对流单体,并追踪其合并分裂,为强对流单体自动识别追踪提供了新思路。 展开更多
关键词 DBSCAN 雷达组网数据 组合反射率 回波顶高 强对流单体 自动识别追踪
在线阅读 下载PDF
面向组网雷达的分布式多机航迹欺骗策略研究
10
作者 赵一泽 赵珊珊 刘子威 《无线电工程》 2026年第1期21-29,共9页
当突防的干扰机资源少于组网雷达中的雷达数量时,干扰机在与多个雷达的延长线上通过距离欺骗产生的假目标点迹难以对组网雷达产生有效的干扰。为实现“以少制多”的战略要求,在此基础上分时加入一定的角度欺骗,通过详定的参数设计及场... 当突防的干扰机资源少于组网雷达中的雷达数量时,干扰机在与多个雷达的延长线上通过距离欺骗产生的假目标点迹难以对组网雷达产生有效的干扰。为实现“以少制多”的战略要求,在此基础上分时加入一定的角度欺骗,通过详定的参数设计及场景规划,在组网雷达的主瓣波束内产生符合真实目标运动规律的假目标,使得雷达网真假难辨。通过仿真验证,提前预设出假目标的航迹信息,以运动学约束为限制条件,最大化欺骗距离为优化目标,设计多干扰机的运动轨迹。设计出的干扰机航迹能够通过组网雷达的“同源检测”,可以达到以假乱真的效果。 展开更多
关键词 组网雷达 欺骗式干扰 粒子群算法 航迹欺骗 数据融合
在线阅读 下载PDF
煤矿井下钻孔雷达信号智能化滤波方法研究
11
作者 张军 张鹏 +3 位作者 赵朋朋 王霄菲 邓立博 王智聪 《煤炭技术》 2026年第1期196-200,共5页
煤矿井下复杂的地质环境和强电磁干扰,导致钻孔雷达信号信噪比低、有效信息提取困难,严重制约地质构造探测精度。传统滤波方法因模型假设局限性和自适应能力不足,难以有效应对井下非平稳、非线性噪声干扰。本文提出一种基于卷积神经网... 煤矿井下复杂的地质环境和强电磁干扰,导致钻孔雷达信号信噪比低、有效信息提取困难,严重制约地质构造探测精度。传统滤波方法因模型假设局限性和自适应能力不足,难以有效应对井下非平稳、非线性噪声干扰。本文提出一种基于卷积神经网络计算技术的智能化滤波方法,融合自适应变分模态分解方法,实现噪声与有效信号的高效分离。通过自适应变分模态分解对原始信号进行本征模态分解,抑制高频噪声干扰;构建多尺度注意力残差网络,提取信号时频域深层特征,增强有效反射波的边缘信息保留能力。实验结果表明,与传统小波滤波和卡尔曼滤波方法相比,本文方法在信噪比和均方根误差指标上均有效有提升,计算效率满足井下实时处理需求。 展开更多
关键词 卷积神经网络 钻孔雷达 智能化滤波 深度学习 杂波抑制
原文传递
基于FAST网络的毫米波雷达端到端手势识别
12
作者 郑好 李浩然 +3 位作者 彭国梁 郑志鹏 胡芬 郇战 《现代电子技术》 北大核心 2026年第1期8-14,共7页
针对目前的毫米波雷达手势识别方法存在预处理步骤复杂、效率差和精度低等不足,文中提出FAST网络模型。首先,该模型使用复值线性层构建傅里叶网络,以离散傅里叶变换值对傅里叶网络进行权重初始化,雷达原始数据经过傅里叶网络后得到距离... 针对目前的毫米波雷达手势识别方法存在预处理步骤复杂、效率差和精度低等不足,文中提出FAST网络模型。首先,该模型使用复值线性层构建傅里叶网络,以离散傅里叶变换值对傅里叶网络进行权重初始化,雷达原始数据经过傅里叶网络后得到距离-多普勒特征;其次,引入ECA模块并计算帧通道注意力权重,提升对手势特征的提取能力;最后,采用Swin Transformer提高计算效率与识别精度,并扩大感受野,利用损失函数进行反向传播并对模型的参数进行迭代更新。实验结果表明,提出的基于FAST的毫米波雷达端到端手势识别算法在提升计算效率的同时,达到了96.46%的准确率,与其他主流算法相比具有先进性,为毫米波雷达手势识别在智能家居、移动设备上的应用提供了更为精简且高效的解决方案。 展开更多
关键词 毫米波雷达 手势识别 人机交互 深度学习 神经网络 离散傅里叶变换
在线阅读 下载PDF
Network Calculus在机载雷达设计中的应用
13
作者 怀靓亮 黄宏卫 《测控技术》 CSCD 北大核心 2012年第5期128-130,143,共4页
Network Calculus是一种基于最小加代数理论来分析网络数据流的方法,它已被广泛应用于工业、航空和航天的复杂网络设计中。机载雷达要求系统具有高实时性,尤其对嵌入式任务的调度有严格的时序要求。在机载雷达的设计中应用此理论,可以... Network Calculus是一种基于最小加代数理论来分析网络数据流的方法,它已被广泛应用于工业、航空和航天的复杂网络设计中。机载雷达要求系统具有高实时性,尤其对嵌入式任务的调度有严格的时序要求。在机载雷达的设计中应用此理论,可以在系统前期设计时提供实时性的理论依据和保障,为雷达系统的实时性设计提供了一种方法和手段。 展开更多
关键词 network CALCULUS 数据流 机载雷达 嵌入式 实时性
在线阅读 下载PDF
Experimental study on soil pollution analysis around tailings using ground penetrating radar
14
作者 Dunwen LIU Desheng GU 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期44-44,共1页
关键词 土壤污染 尾矿 矿山 地面穿透雷达 人工神经网络
在线阅读 下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别 被引量:2
15
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
原文传递
A Short-Range Quantitative Precipitation Forecast Algorithm Using Back-Propagation Neural Network Approach 被引量:5
16
作者 冯业荣 David H.KITZMILLER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第3期405-414,共10页
A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimate... A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimated cloud-top temperature, lightning strike rates, and Nested Grid Model (NGM) outputs. Quan- titative precipitation forecasts (QPF) and the probabilities of categorical precipitation were obtained. Results of the BPNN algorithm were compared to the results obtained from the multiple linear regression algorithm for an independent dataset from the 1999 warm season over the continental United States. A sample forecast was made over the southeastern United States. Results showed that the BPNN categorical rainfall forecasts agreed well with Stage Ⅲ observations in terms of the size and shape of the area of rainfall. The BPNN tended to over-forecast the spatial extent of heavier rainfall amounts, but the positioning of the areas with rainfall ≥25.4 mm was still generally accurate. It appeared that the BPNN and linear regression approaches produce forecasts of very similar quality, although in some respects BPNN slightly outperformed the regression. 展开更多
关键词 quantitative precipitation forecast BP neural network WSR-88D Doppler radar lightning strike rate infrared satellite data NGM model
在线阅读 下载PDF
一种探地雷达与深度学习的隧道衬砌健康评价方法 被引量:1
17
作者 张广伟 《测绘通报》 北大核心 2025年第3期122-126,149,共6页
隧道在其服役期内,受多种因素影响,隧道壁后会产生空洞、不密实等多种结构病害,影响服役性能,探地雷达(GPR)无损检测技术广泛应用于隧道质量检测领域,但由于雷达数据的解译工作较为复杂,数据量大,检测效率有待提高。近年来,深度学习因... 隧道在其服役期内,受多种因素影响,隧道壁后会产生空洞、不密实等多种结构病害,影响服役性能,探地雷达(GPR)无损检测技术广泛应用于隧道质量检测领域,但由于雷达数据的解译工作较为复杂,数据量大,检测效率有待提高。近年来,深度学习因其出色的数据处理能力和信息提取能力而备受瞩目,提供了多种高效、可靠的病害分类模型。本文基于GPR图像,提出了一种多级病害分类方法用于评估隧道衬砌健康状况。首先,获取雷达图像数据,并进行人工解译,创建样本数据库,用于模型的输入和输出,以训练和测试深度学习模型;然后,针对数据库的小样本特点,利用Vision Transformer网络和改进后的Compact Convolutional Transformer对数据进行分类。结果显示,Vision Transformer算法可以实现基于雷达影像的隧道衬砌健康评价,相较于其他版本,具有更好的结果及较高的准确率。 展开更多
关键词 探地雷达 神经网络 Vision Transformer 隧道衬砌健康评价
原文传递
面向LiDAR/Radar松组合的迭代加权IEKF-BP组合算法精度分析 被引量:1
18
作者 宋宝 柯福阳 赵兴旺 《测绘通报》 CSCD 北大核心 2021年第2期44-48,共5页
为了验证目前高精度定位中多传感器组合定位模型性能的优越性,以更好地解决自动驾驶场景下自主定位中出现的预测精度标准不一致、预测不及时及误预测率高等问题,本文利用LiDAR与Radar数据,建立了一种基于迭代加权的IEKF-BP组合算法的松... 为了验证目前高精度定位中多传感器组合定位模型性能的优越性,以更好地解决自动驾驶场景下自主定位中出现的预测精度标准不一致、预测不及时及误预测率高等问题,本文利用LiDAR与Radar数据,建立了一种基于迭代加权的IEKF-BP组合算法的松组合模型,并对两种传感器组合定位结果精度进行了分析。试验表明,迭代加权的IEKF-BP组合算法的组合结果精度优于单一的IEKF算法和BP神经网络算法组合定位精度,其中,在X、Y方向上的均方根误差分别为0.028、0.028 m,平均误差分别为0.023、0.014 m,能准确反映载体的运动状态,满足未来无人驾驶中定位需求。 展开更多
关键词 组合定位与导航 LiDAR/radar松组合定位 迭代拓展卡尔曼滤波 BP神经网络 迭代加权的IEKF-BP组合定位算法
原文传递
基于探地雷达单道信号的碎石道床病害智能识别 被引量:2
19
作者 井国庆 卜俊杰 彭湛 《铁道学报》 北大核心 2025年第6期170-178,共9页
基于探地雷达的铁路碎石道床病害检测技术是指导铁路基础设施养护维修的重要技术手段,目前该技术主要通过人工解读雷达图像的方式给出病害区域,自动化水平较低。提出一种利用神经网络技术对铁路碎石道床病害智能识别的方法。该方法对雷... 基于探地雷达的铁路碎石道床病害检测技术是指导铁路基础设施养护维修的重要技术手段,目前该技术主要通过人工解读雷达图像的方式给出病害区域,自动化水平较低。提出一种利用神经网络技术对铁路碎石道床病害智能识别的方法。该方法对雷达单道信号进行多特征提取,并进行特征敏感性分析,利用神经网络技术进行训练,可实现对正常道床、含水异常和翻浆冒泥的准确识别。结果表明,该方法在测试集上的病害识别准确率达到95.89%,在相邻铁路线上的准确率为90.19%。此研究显著提高了病害检测的效率和准确性,对铁路道床维护和安全运营提供了重要的技术支持,具有实际应用价值。 展开更多
关键词 碎石道床 探地雷达 特征值 神经网络 无损检测
在线阅读 下载PDF
5G-A通感一体基站组网低空感知关键技术 被引量:5
20
作者 刘斌越 杨建强 +2 位作者 徐波 王博磊 蔡华 《信号处理》 北大核心 2025年第5期787-806,共20页
随着低空经济的兴起,对低空无人机进行监管成为支撑低空经济发展的必然要求。本文深入分析了城市环境下无人机雷达检测的技术难点。一方面,消费级无人机的小型化、高机动特征对雷达目标检测性能带来了巨大挑战。另一方面,密集城区环境... 随着低空经济的兴起,对低空无人机进行监管成为支撑低空经济发展的必然要求。本文深入分析了城市环境下无人机雷达检测的技术难点。一方面,消费级无人机的小型化、高机动特征对雷达目标检测性能带来了巨大挑战。另一方面,密集城区环境下动、静杂波也带来了雷达检测率低与虚警率高的挑战。单雷达检测能力在这些挑战问题中表现不佳,这使得单站雷达在密集城区场景下存在较大的应用局限性。雷达组网感知技术从检测率提升和虚警率降低两个指标上都大幅提升了单站雷达能力,因此,雷达组网技术成为现代雷达技术发展趋势。虽然雷达组网技术有诸多优势,但要实现大规模雷达组网,也存在大量需要解决的技术与工程问题。相较于传统雷达组网存在的诸多局限,5G-A通感基站凭借其独特优势,能够充分复用5G-A通信基础网络的能力,进而成功攻克大规模雷达组网中时、频、空配准的关键技术难题。基于5G-A通感一体基站组网架构,得以实现基于相参或非相参机制的多站联合信号检测技术,以及基于点云数据融合或轨迹级关联的联合目标追踪与多站联合目标识别等一系列核心技术。这些技术经理论分析与实践验证,在提升低空无人机检测能力方面成效显著,满足低空感知指标要求,从而使得5G-A通感一体基站组网成为城市环境低空感知体系中不可或缺的关键构成部分。 展开更多
关键词 低空无人机感知 5G-A 通感一体 雷达网络
在线阅读 下载PDF
上一页 1 2 101 下一页 到第
使用帮助 返回顶部