期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
面向Dataflow的异构集群混合式资源调度框架研究
被引量:
6
1
作者
汤小春
赵全
+4 位作者
符莹
朱紫钰
丁朝
胡小雪
李战怀
《软件学报》
EI
CSCD
北大核心
2022年第12期4704-4726,共23页
Dataflow模型的使用,使得大数据计算的批处理和流处理融合为一体.但是,现有的针对大数据计算的集群资源调度框架,要么面向流处理,要么面向批处理,不适合批处理与流处理作业共享集群资源的需求.另外,GPU用于大数据分析计算时,由于缺乏有...
Dataflow模型的使用,使得大数据计算的批处理和流处理融合为一体.但是,现有的针对大数据计算的集群资源调度框架,要么面向流处理,要么面向批处理,不适合批处理与流处理作业共享集群资源的需求.另外,GPU用于大数据分析计算时,由于缺乏有效的CPU-GPU资源解耦方式,降低了资源使用效率.在分析现有的集群资源调度框架的基础上,设计并实现了一种可以感知批处理/流处理应用的混合式资源调度框架HRM.它以共享状态架构为基础,采用乐观封锁协议和悲观封锁协议相结合的方式,确保流处理作业和批处理作业的不同资源要求.在计算节点上,提供CPU-GPU资源的灵活绑定,采用队列堆叠技术,不但满足流处理作业的实时性需求,也减少了反馈延迟并实现了GPU资源的共享.通过模拟大规模作业的调度,结果显示,HRM的调度延迟只有集中式调度框架的75%左右;使用实际负载测试,批处理与流处理共享集群时,使用HRM调度框架,CPU资源利用率提高25%以上;而使用细粒度作业调度方法,不但GPU利用率提高2倍以上,作业的完成时间也能够减少50%左右.
展开更多
关键词
数据流模型
批处理
流处理
作业感知
CPU-GPU
队列堆叠
在线阅读
下载PDF
职称材料
题名
面向Dataflow的异构集群混合式资源调度框架研究
被引量:
6
1
作者
汤小春
赵全
符莹
朱紫钰
丁朝
胡小雪
李战怀
机构
西北工业大学计算机学院
出处
《软件学报》
EI
CSCD
北大核心
2022年第12期4704-4726,共23页
基金
国家重点研发计划(2018YFB1003400)。
文摘
Dataflow模型的使用,使得大数据计算的批处理和流处理融合为一体.但是,现有的针对大数据计算的集群资源调度框架,要么面向流处理,要么面向批处理,不适合批处理与流处理作业共享集群资源的需求.另外,GPU用于大数据分析计算时,由于缺乏有效的CPU-GPU资源解耦方式,降低了资源使用效率.在分析现有的集群资源调度框架的基础上,设计并实现了一种可以感知批处理/流处理应用的混合式资源调度框架HRM.它以共享状态架构为基础,采用乐观封锁协议和悲观封锁协议相结合的方式,确保流处理作业和批处理作业的不同资源要求.在计算节点上,提供CPU-GPU资源的灵活绑定,采用队列堆叠技术,不但满足流处理作业的实时性需求,也减少了反馈延迟并实现了GPU资源的共享.通过模拟大规模作业的调度,结果显示,HRM的调度延迟只有集中式调度框架的75%左右;使用实际负载测试,批处理与流处理共享集群时,使用HRM调度框架,CPU资源利用率提高25%以上;而使用细粒度作业调度方法,不但GPU利用率提高2倍以上,作业的完成时间也能够减少50%左右.
关键词
数据流模型
批处理
流处理
作业感知
CPU-GPU
队列堆叠
Keywords
dataflow model
batch process
streaming process
application aware
CPU-GPU
queue overlap
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
面向Dataflow的异构集群混合式资源调度框架研究
汤小春
赵全
符莹
朱紫钰
丁朝
胡小雪
李战怀
《软件学报》
EI
CSCD
北大核心
2022
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部